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Executive Summary 

 

The United States Pipeline and Hazardous Materials Safety Administration (PHMSA) has been 

gathering incident data for last thirty-five years. The rules and criteria have been changed a few 

times with the development of new findings and necessity. At present, PHMSA is collecting over 

600 data fields for every reported incident. Some of these incidents are required to go through full 

investigations based on specific criteria. They provide more detail insight about the incidents 

especially the detail cause(s) behind the incident. They also offer a way forward to improve and 

prevent any future incidents of the same or similar kind. However, none of the systems or process 

of gathering incident data or incident investigation is flawless. They must go through a continuous 

improvement process. New pipeline technologies, increase in commodity transported and hence 

the number of incidents, and novel data analytic techniques especially the machine learning and 

artificial intelligence tools necessitate the continuous improvement process to keep going. In the 

current study, natural language processing (NLP) and artificial neural network (ANN) have been 

employed to analyze past pipeline incident data and develop models to predict future pipeline 

incidents.     

PHMSA collects incidents data particularly in three areas based on the commodity 

transported: hazardous liquid (HL), gas transmission and gathering (GTG), and gas distribution 

(GD). The data files are available for three different timelines (1986-2001/2004), (2002/2004-

2009), and (2010-present) because of rules changes of reporting criteria. Current study considered 

HL database for year (2010-present) for appropriate data size and data quality. Total number of 

incidents in this dataset is 3,755. Because of changes in the reporting system, data from different 

time periods are not consistent, and hence, only the newest set of data was selected. On the same 

note, incident investigation reports prepared after 2010 and related to HL were considered for 

further analysis (total number of reports considered is 44).  

A comprehensive literature review related to causal analysis of pipeline failures was 

conducted. Primary focus of the published articles includes identifying the major causes of failure, 

failure trends, and their relationship with other parameters. According to the literature, researchers 

used data from various sources including PHMSA datasets. As it necessitates, causal structures as 

reported in other incident data sources, such as National Energy Board, Canada (NEB) and 

European Gas Pipeline Incident Data Group (EGIG), were also studied. Analysis of the obtained 
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incident data and causal-consequence relationship showed that factors that influenced the pipeline 

incidents can be classified into three groups: 

• Causal factors  

o direct causes – mapped causes and sub-causes as coined by PHMSA 

o Seven standard causes: corrosion, material/ weld/ equipment failure, excavation 

damage, incorrect operation, natural force damage, other outside force damage, 

all other causes 

o Reporting multiple causes is not allowed by PHMSA 

• Background factors  

o All relevant information  

o Such as pipe diameter, wall thickness, material of construction, year of 

installation, commodity transported, operating pressure, coating material 

o PHMSA collection of background information is comprehensive  

• Underlying factors 

o They are the root causes 

o Such as poor maintenance protocol, inadequate supervision, faulty design 

o PHMSA does not gather such information in a structured manner 

There is no recommended restructure found for incident investigation reports. They often 

more focused on only technical issues and failed to identify the underlying causes especially 

management or organizational issues. Since there is not structured guideline to do it, it is often 

difficult to summarize them. Another limitation is the small number of publicly available incident 

investigation reports (less than hundred for all categories).  

To gather more information than that are available in incident records obtained from the 

databases, two sources have been used: first, the incident narratives from the incident database, 

and second, the available incident investigation reports. Three NLP and text mining techniques 

have been explored to extract useful information from the two datasets: K-means clustering, topic 

modeling, and co-occurrence network. K-means clustering and co-occurrence network have been 

applied to incident narratives, and topic modeling and co-occurrence to investigation reports. Since 

data was structured and organized against direct causes, K-means clustering did not produce very 

good results. It also indicates the secondary causes or underlying causes not consistent. In other 

words, any significant secondary pattern was absent. On the contrary, both co-occurrence network 
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and topic modeling identified words that appeared again and again in close proximity. For instance, 

they were able to identify the words that appeared near to a certain word say corrosion. Both 

unsupervised (the word corrosion not given) and supervised (the word corrosion was fed as seed 

word) options have been explored. Both methods found very promising in extracting background 

and underlying factor. A validation exercise has been conducted by manually checking the 

narratives where the techniques were suggestive. For further study, supervised technique around a 

specific direct cause or development of a multi-step NLP techniques would be beneficial. 

An integrated framework for risk prediction using ANN and Bayesian model has been used 

to predict a corrosion-induced incident in the onshore HL pipeline. The causal and consequence 

estimation models have been developed utilizing the ANN technique, and the probability 

estimation model utilizes the Bayesian analysis. The ANN model utilized 70 data fields from the 

incident record and compress them into 26 using process knowledge resulting in higher 

information density. ANN model was validated with reasonable accuracy for several consequence 

categories. The Bayesian analysis model performance is also tested for the prediction of the 

probability of the incident. Utilizing the proposed framework including ANN models for cause 

and consequence prediction and Bayesian analysis for probability prediction, the risk of a 

corrosion-induced pipeline incident was predicted given the current condition of pipelines. This 

shows the strength of the proposed framework to predict the risk of corrosion-induced pipeline 

incidents and can further be extended to pipeline incidents caused by other causes such as 

excavation, natural forces, etc. 
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1.0 INTRODUCTION 

On-site inspection, laboratory analysis such as chemical analysis, metallography, mechanical 

testing such as failure tests, fatigue test, and other data analysis are conducted to determine when 

a pipeline will likely fail if exposed to a specific condition. Diverse factors including operational 

and environmental conditions, natural calamities, manufacturing defects, and even deficiencies in 

management’s attempt to maintain the integrity can simultaneously influence pipeline integrity 

and cause early failure. It is difficult, if not impossible, to deterministically predict failures arising 

from such factors due to the variety and number of such factors. For better assessment and 

prediction of pipeline failures, these factors which can contribute to pipeline failure and their 

corresponding contributions needs to be learnt and implemented from past incidents.  

Once an incident occurs due to pipeline failure, they are reported as per regulatory 

requirement and incident investigation are conducted for a few to determine what caused the 

incident and recommendations are provided so that proper measure can be taken to prevent future 

recurrences. Over the last 20 years, more than 11 thousand pipeline incidents have been reported 

to PHMS  (Pipeline and Hazardous Materials Safety Administration 2019). If the causes behind 

these incidents can be identified appropriately, it can act as a vast source of knowledge. If the 

learnings of what went wrong in these incidents are used to understand what can go wrong in the 

future, then it is possible to obtain a more compete hazard analysis and better failure prediction of 

an installed pipeline. Unfortunately, neither the learnings/ recommendations made after an incident 

are always applied in practice, nor are such learnings remembered for use in future hazard analysis 

or risk/failure assessment. Usually, the task of hazard identification in the industry is left to a team 

of experts who use their experience to predict what can go wrong and how. Anything beyond their 

experience is not captured in any hazard identification or incident investigation process. Any factor 

that the experts are unaware of or have forgotten or not considered that it had caused incidents in 

the past will not be considered in a failure analysis. This can lead to a repetition of a past incident. 

With the reported 11,000+ incidents that resulted in more than 300 deaths and more than 7 billion 

dollars’ worth damage in the past 20 years, it is apparent that incidents keep happening (Pipeline 

and Hazardous Materials Safety Administration 2019) and not enough learning and understanding 

exists to stop them. If these incidents are studied in-depth, it is likely that one will identify 

similarities in terms of existing root causes or contributing factors behind several of them.  
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Indeed, the fallacy of a complete hazard identification can be seen in several studies comparing 

the causes of incident that occurred with scenarios that had previously been identified in accident 

analysis studies. At the latest European Loss Prevention symposium, Taylor (2016) , a life-long 

risk analysis specialist, looked back at his own risk assessment results of 92 quantitative risk 

analysis (Q(Esmaeili and Hallowell 2012)RAs) of 429 plant units in 36 years. So far, 26 major 

hazard accidents occurred. He concluded that 20% was due to missing scenarios that had not been 

predicted. In the US, based on analysis of incident investigations of US Chemical Safety Board, 

Kaszniak (2010), followed by Baybutt (2016) found that in quite a few cases, none of the lessons 

learnt from previous incidents had been applied to the PHAs and often, the recommendations, such 

as application of correct safeguards, had not been placed into practice. 

As Hollnagel (2017) mentions, accident investigation and risk assessments are two sides 

of the same coin in that they consider the same set of events or phenomena either retrospectively 

(after they have happened) or prospectively (before they have happened). It is rather easier to 

determine in retrospect what causes led to an incident rather than predict what can go wrong that 

will lead to an incident in the future. It is also easier to focus on technical issues that can lead to a 

failure (and these are easier to determine from laboratory experiments) rather than determining the 

human and organizational contributions to the causes. To achieve completeness of hazard analysis 

and predict failure of pipelines, it is essential to consider all learnings obtained from root cause 

analysis of past incidents and take proper mitigative measures based on the learnings to eliminate 

the causes. 

Once root causes behind failures become available, it should be utilized to prevent similar 

incidents from occurring. Pipelines can run for thousands of miles and failure incident data are 

usually available in large numbers. When such large number of incidents is investigated, many 

root causes can also suffice. Attempting to utilize these root causes to predict future failures can 

be a daunting task since upfront, it may not be possible to identify the relation between the failure 

and the cause and the relation between the causes themselves.  

A complete root cause analysis leads to identification of the deficiencies that contributed 

to the incident. As such, most of these deficiencies point to organizational limitations that an 

investigation team attempts to uncover so as to provide better recommendations. A team unravels 

several root causes that interacted together to cause the incident. Pipelines constructed and 

maintained by any organization have numerous technical, operations, human and organizational 
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factors interacting with each other. Factors such as training of workforce, budget allocation for 

maintenance, availability of resources are factors that can appear as root causes behind an incident. 

Such causes are non-technical in nature, and it is very difficult to determine how they will 

contribute to failure. As Perrow (2011) mentions, in a complex system, their interactions give rise 

to numerous non-linear, tightly coupled cause-effect relationships that are difficult to predict. Non-

linear relationships arise when the effect of interaction of several direct and indirect causes may 

be something different from their simple summation. For a pipeline too, operation may be 

influenced by the various constituents of a socio-technical system, such as human factors (such as 

how an operator conducts maintenance operations) or organizational factors (such as training 

provided on time to maintenance personnel) and non-linear relationships among the constituent 

exist naturally.  

In the past, attempts have been made to learn from previous incidents, some of which try 

to cover all the different constituent or aspects of a system. From incident investigation practice, 

long checklists of cue words in a taxonomy structure, preferably computerized, have been 

developed so that none of the causes of failure are overlooked. Taylor (2017) summarized how 

despite checks, reviews, and HAZOPs, errors still creep into designs. If these lists are not 

comprehensive it will lead to incomplete assessment. It will probably never be sufficient to cover 

the near-endless variety of possible causes either. A new method helping to learn from past 

incidents is DyPASI (Dynamic Procedure for Atypical Scenarios Identification) developed by 

Paltrinieri et al. (2013). The method uses data mining similarity algorithm applied to incident data 

bases (such as French ARIA, European eMARS, and near-misses reports and risk studies) to 

extract cases that have resemblance to the plant at hand. This is followed by a prioritization of 

results based on relevance through a similarity score to help with hazard identification. This was 

further modified (Paltrinieri et al. 2014) to estimate updated probability of incident scenarios by 

means of Bayesian inference. Rathnayaka et al. (2011) developed a predictive accident 

propagation model based on fault and event trees as part of an approach called the System Hazard 

Identification, Prediction and Prevention (SHIPP) methodology. Here also, recorded incidents are 

used to predict future ones. A generic incident process sequence is defined from initiation to final 

consequence via event tree, taking into account the various types of barriers, including prevention, 

dispersion, ignition, escalation, human factor, and management and organizational barrier. Fault 

trees are drawn for each barrier and use generic data at the basic events. With likelihood data of 
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major incidents being rate, this method makes use of data related to observed plant disturbances, 

such as unusual behavior, near misses, mishaps, to update older data in the event tree using 

Bayesian theorem to predict probabilities of future minor and major incidents. Quite a few other 

similar works that have their basis on Bayesian network have been developed (Kalantarnia et al. 

2009, Xin et al. 2017, Meng et al. 2019). However, Bayesian Networks are acyclic graphs, hence 

feedback from an effect node back to an earlier cause level is not possible: in BN an effect cannot 

influence its cause. For this reason, relying only on using incident precursor data, as done in SHIPP 

methodology, does not allow identification of factors that have the largest potential to cause an 

incident. In addition, once a Bayesian network is set up, incorporation of a new cause (node) or 

changes in the way a system interacts cannot be modeled. In that sense, dynamic modeling, to 

capture the effects of changes in a system, is not obtained. Bayesian network, being dependent on 

cause-effect relationships, also has limitations in capturing non-linear interactions that arise when 

multiple factors contribute to failure. Ferjencik (Ferjencik 2011, Ferjencik 2014) attempted to 

overcome the problems of linear cause-effect models by combining the advantages of a predefined 

tree Root Cause Analysis (RCA), with those of Systems-Theoretic Accident Model and Processes 

(STAMP). STAMP identifies direct and indirect causality using a systems approach (Leveson 

2016). In that, it can capture non-linear interaction of various factors which are otherwise not seen 

in the traditional cause-effect linear relationships shown by predefined trees. Ferjencik’s 

(Ferjencik 2011) work resulted in an integrated method called IPICA (Integrated Procedure for 

Incident Cause Analysis). Ferjencik (Ferjencik 2011) states the limitations of the predefined root 

cause tree, though, by quoting the adage:” What You Look For Is What You Find”. This bias leads 

to incompleteness and limited depth. It can also be argued what exactly is a root cause, and the 

RCA technique is not suitable in case of non-linear and dynamic system behavior. Therefore, a 

deeper investigation using STAMP is called for.  The method appeared to be rather tiresome in 

use, mainly because for STAMP, much information must be collected and conducting STAMP is 

laborious. Ferjencik (Ferjencik 2014) tried to simplify the method as IPICA_Lite, while retaining 

as much as possible of the original IPICA. In IPICA_Lite (Ferjencik 2014) STAMP is replaced by 

suggestions for improvements made to root cause analysis which include identification of causes 

as deficiencies in the system and grouping processes connected to causes into a hierarchy. Thus, 

through proper root causes analysis, the prediction attained from predefined trees is improved. 
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The methods for implementing information regarding past failures have a common in their 

inability to capture the nonlinear interaction of causes that contribute to the failure of pipelines. 

Perhaps IPICA, using STAMP attempts to capture the managerial and the societal aspects but as 

shown, the method itself is tedious and its later version IPICA Lite reverts back to using the simple 

linear relationship among causes. Yet, for developing a model that considers such non-linear 

relationships, one must examine the total enterprise/organization and its culture and not only the 

circumstances and causation of the accident.  

It is thus of great importance to understand how different factors can come together and 

influence the pipeline integrity. Such information can be combined with laboratory analysis and 

findings from inspection to better predict when and how a pipeline will fail. 

1.1 Research Objectives 

To develop a knowledge-based predictive model to assess pipeline failure it would require 

a. Learning about causes behind pipeline failure: Conducting root cause analysis of past 

incidents to identify those factors that have to potential to contribute to failure. The 

findings are to be specific to the extent that they can be applied into a predictive model. 

b. Implementation of learning to predict failure: Utilizing the learnings about contributing 

factors behind pipeline failure to develop a predictive model that monitors current existing 

conditions to determine dynamic failure probability of pipeline so that the factors can be 

tackled before they lead to failure. 

1.2 Proposed Framework 

A framework for developing a model from root cause failure analysis of past pipeline incidents 

has been proposed based on the artificial neural network (ANN). ANN offers great potential for 

the development of a monitoring system based on past records while overcoming the limitations 

of the past attempts. The proposal presented development of an ANN model for the prediction of 

failure of pipelines based on findings from investigation of past pipeline failure, both in real life 

operation as well as in laboratory experiments. The suitability of ANN for this purpose lies in its 

ability to do the following (Sidarta et al. 2017): 

• learn from past records to produce a predictive model 

• model complex non-linear behavior that may exist in any socio-technical system,  

• recognize or classify patterns in behavior and interaction of various contributing factors,  

• tolerate noises and deal with large data.  
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They are particularly useful when there is no prior knowledge about how the variables interact 

since ANN models develop an understanding of the relations based on information provided during 

training. Thus, past findings can be utilized to train the ANN to recognize the relations between 

variables (Figure 1.1).  

 

Figure 1.1 A generalized neural network, adopted from (Sidarta et al. 2017) 

Artificial Neural Networks are based on the mimicry of biological neural networks that 

have neurons as unit processors, arranged in a multilayered structure that processes input data 

through hidden layers that contain stored information to help in determining the proper output. Fig 

1 shows a generalized neural network model. Input signals received by neurons at the input layer 

propagate through the hidden layers to reach the output layers. Neurons at each layer are connected 

to all neurons at the next layer with a connection weight or value that is determined from past 

information (during training). The input signal to a neuron i (xi) is converted to an output signal 

(Zhang et al.) based on a sigmoidal activation function. Between layers, the connection of neuron 

i to a neuron j in the next layer carries a certain weight (wij) that depends on the summation of the 

signals coming from all the neurons in the previous layer (Yegnanarayana 2009, Sidarta et al. 

2017).  

For a given input to the neurons at the input level, an output is generated as signals pass 

through the network. This output will be compared with the actual output for the given input and 

an error between the actual output and the generated output will be determined. This error is back 

propagated through the network to modify the connection weights. There are many developed 
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methods by which this modification can be obtained (e.g. Delta-Bar-Delta-Bar method (Ochiai 

and Usui 1993)). 

In recent years, several attempts had been made to use ANN models to predict pipeline 

conditions. They are as follows: 

• A model developed for sewer pipeline that utilizes information related to age, material of 

construction, length, diameter, depth and slope of pipes and their measured conditions to 

predict what condition may exist for a given pipe section (Najafi and Kulandaivel 2005). 

• A model to predict burst pressure was developed using ANN after assessing the failure 

behavior of pipeline due to interacting defect depth (Xu et al. 2017)  

• A model was developed to predict the remaining useful life of pipeline using ANN which 

is developed by Levenberg-Marquardt backpropagation methodology (Zangenehmadar 

and Moselhi 2016). 

• A BP neural network is developed to identify the crack in pipeline after quantification of 

crack geometry (Liu et al. 2017) 

• An ANN model was developed using inspection data which can predict the future condition 

of pipeline  

These models were developed based on data encompassing inspection, crack 

measurements, defect depths, pipeline properties, failure behaviors etc. given as input to ANN. 

However, none of the methods had used any non-technical (human or organizational) factors such 

as the effect of improper maintenance or maintenance backlog and thus, does not allow adoption 

for implementation of findings from root cause failure analysis.  

The study looks into overcoming the limitations of the past attempts by suggesting a 

framework for implementation of findings from past incidents along with other data sources such 

as those from inspection records and laboratory tests (Figure 1.2) to develop a predictive model 

that accounts for contribution to failure by both technical and non-technical factors. 
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Figure 1.2 Framework for learning from past incidents to predict pipeline failure probability 

1.3 Research Tasks 

The framework brings forth the tasks required to meet the challenges towards application of 

artificial neural network (ANN) to ensure pipeline integrity. These are outlined and explained next.  

1. Development of methodology for creating root cause analysis reports  

2. Selection of training samples and development of the learning algorithm and validation of 

resulting model and utilization for prediction 

This report describes the status of the pipeline incident data and incident investigation report in 

Chapter 2. The outline and results of the two research tasks are presented in the Chapter 3 and 

Chapter 4. Chapter 5 concludes with a few recommendations and future direction of research.  
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2.0 CURRENT STATUS OF PIPELINE INCIDENT DATA  

2.1 Background 

Worldwide energy demand grew by 2.3% in 2018 with natural gas emerging as the fuel of choice, 

showing the biggest gains and accounting for 45% of the rise in energy consumption (International 

Energy Agency 2019). A worldwide wave of pipeline construction activity has been driven by this 

continuing global shift towards natural gas. In particular, the United States led the global increase 

for the first time in 20 years; the rapid growth of shale production, the lifting of an oil export ban, 

and the predicted growth in global LNG demand led to a massive infrastructure development, 

including oil and LNG export terminals, and the pipeline capacity to supply them (Awalt 2019). 

The U.S. pipeline network which consists of two-third of world’s pipeline mileage, transports 

almost all the natural gas produced and used in the country, as well as over 90% of crude oil and 

refined petroleum products. There has been a 44% increase in transportation through pipelines in 

the last five years (Allison and Mandler 2018, American Petroleum Institute and Associattion of 

Oil Pipelines 2019, Central Intelligence Agency 2019, Wikipedia 2019). The US pipeline network 

however is no different from the pipelines of the rest the world when it comes to pipeline incidents. 

Figure 2.1 shows a few well-known pipeline incidents from across the world since 2010 (Abraham 

2019, Wikipedia 2019), including data of lives the claimed and the spillage they caused. It includes 

some major US pipeline incidents such as Kalamazoo River pipeline leak spilling 20,000 barrels 

of oil (National Transportation Safety Board 2012), San Bruno pipeline explosion killing 8 people 

(National Transportation Safety Board 2011), and Keystone pipeline spillage (Ramírez-Camacho 

et al.) releasing 5,000 barrels of crude oil (National Transportation Safety Board 2018). The 

occurrence of such major incidents at frequent intervals worldwide indicates that the challenges 

involving safe oil and gas transportation via pipelines are still magnanimous.  
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Figure 2.1 A few major pipeline incidents across the world with fatality or spillage 

The Pipeline and Hazardous Materials Safety Administration (Pipeline and Hazardous 

Materials Safety Administration), which is responsible for safe operation of the pipeline network 

in the United States, publishes pipeline incident data regularly on their website (Pipeline and 

Hazardous Materials Safety Administration 2019). A set of safety performance parameters used 

by PHMSA is summarized in Table 2.1 and the corresponding trend lines are shown in Figure 2.2. 

These parameters (number of incidents, significant incident, fatality, injury, asset damage, and 

spillage) are considered lagging indicators, which is “a retrospective set of metrics that are based 

on incidents that meet the threshold of severity that should be reported as part of the industry-wide 

process safety metric” (Center for Chemical Process Safety 2011). The variation of parameter 

values especially number of injuries and spillage amount appears random as there can be multiple 

reasons behind it. They are used in calculating failure rates and might be useful to predict a future 

incident; but they do not provide much insight on how to improve the current performance or 

reduce the chances of future incidents. However, the sheer number of incidents, their trends and 

causes identified indicate that there exist ample opportunities for improvement. In the past, this 

has drawn a lot of researchers to this domain of pipeline research.  
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Table 2.1 Pipeline incident summary of hazardous liquid system in the US for the last 9 years 

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 Total 

All incidents 586 588 571 618 706 712 632 647 636 5696 

Significant incidents 264 285 255 303 302 329 309 302 291 2640 

Fatality 22 13 12 9 19 11 16 20 8 130 

Injury 108 55 57 44 95 48 87 38 90 622 

Damage ($ in million) 1693 426 230 369 321 350 377 321 1050 5137 

Spillage (‘000 barrels) 41.5 36.7 60.4 14.8 25.6 47.5 16.9 37.4 44.5 325 

 

 

Figure 2.2 Trendlines for pipeline incident parameters observed by PHMSA 

A summary of literature on cause analysis of pipeline incidents is shown in Table 2.2. The 

table contains the causal factors that the studies considered, background factors that were identified 

as having some association with the causal factors, and the source of data where the causes were 

reported (such as US DOT, CONCAWE, EGIG, and UKOPA). Here, the causal factor is defined 

as “a major unplanned, unintended contributor to an incident (a negative event or undesirable 

condition), that if eliminated would have either prevented the occurrence of the incident, or 

reduced its severity or frequency” (Center for Chemical Process Safety 2019). Thus, causal factors 

are those that are directly responsible for causing an incident and these factors may act alone or 
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with other factors to cause the incident or worsen the impact. The studies reported corrosion, 

mechanical failure, third-party damage, outside force etc. as causal factors. A causal factor like 

corrosion may contribute to an incident along, for example by causing pipe damage leading to a 

leakage, or it may weaken the pipeline and with slight third-party damage, may together cause a 

pipeline to break. A few studies have also linked other parameters such as commodity transported, 

pipeline location, diameter, wall thickness, installation year, depth of cover with the incidents. 

These parameters are defined as background factor. A background factor can be defined as one 

that seems to influence a causal factor under certain condition or value more than it does under 

other conditions, thus increasing the likelihood of failure due to that causal factor. They are 

generally inherent characteristics of the pipeline and transportation and do not have any direct 

influence on pipeline failure. For instance, pipelines with certain diameters seem to fail more than 

those with larger or smaller diameters and corrosion seems to be a leading causal factor behind 

such failures. Here, corrosion is considered as the causal factor with diameter of the pipeline being 

the background factor. It may be that the mechanism by which the background factors influence 

the causal factors is not yet perceived, and subsequently, why they influence the causal factors is 

not yet well understood. There is a lack of studies linking causal factors to the management system 

failures. Typically management, design, planning, organizational or operational failings are 

identified as root cause or underlying cause (Occupational Safety and Health Administration 2015, 

National Energy Board 2019), which is defined as “a fundamental, underlying, system-related 

reason why an incident occurred that identifies one or more correctable system failures” (Center 

for Chemical Process Safety 2019). In this article, the term underlying cause has been used 

subsequently. They represent the system’s performance, and have a direct influence on a causal 

factor, but do not directly cause a pipeline failure. Similar studies in oil and gas production in 

offshore (Halim et al. 2018), onshore (Yu et al. 2017), and hazardous material transport (Quddus 

et al. 2018) incidents show a strong link between causal factors with underlying causes, as the 

negative events and undesirable conditions involve some of the active and latent failures that 

contributed to the incident.  
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Table 2.2 A summary of articles on causal analysis of pipeline incidents 

Author (Year) Causal factors Background factors Data sources** 

(Andersen and Misund 

1983) 

Outside force/ third party damage, 

corrosion, mechanical failure, 

material and construction defects 

Pipeline age, location, diameter, 

commodity transported 

CONCAWE, US DOT 

(Papadakis 1999) Corrosion, external interference, 

construction/ material defect, other 

Pipeline diameter, commodity 

transported, location 

CONCAWE, EGIG, US 

DOT, VNIIGAS (Soviet 

Union) 

(Bersani et al. 2010) Corrosion, mechanical, third-party *Hydrological, anthropogenic,  

technical factors  

CONCAWE, US DOT 

(Han and Weng 2011) External interference, corrosion, 

material defect, operation error, 

ground movement 

Flow rate, pressure, wall 

thickness, pipeline diameter, 

service life, depth of cover 

US DOT GTG 

(Cunha 2012) Corrosion, material construction, 

natural causes, third-party action, 

others-unknown 

Commodity transported, coating 

type, wall thickness, nominal 

diameter, population density, 

depth of cover 

EGIG, CONCAWE, 

UKOPA, US DOT, Trans 

Petro, NEB 

(Wang and Duncan 2014) Corrosion, outside force, 

construction/ material defects 

Pipeline age, location US DOT GTG 

(Siler-Evans et al. 2014) Weather/ natural disaster, outside 

forces, operator error, material 

failure, corrosion, other  

 US DOT 

(Lam et al. 2016) Corrosion, material failure, 

excavation damage, other outside 

forces, natural forces 

Location, pipeline material, 

pipeline age, diameter, corrosion 

prevention measure 

US DOT GTG 

(Ramírez-Camacho et al. 

2017) 

Third-party activity, corrosion, 

mechanical failure, 

operational/human error, natural 

hazards, equipment failure 

Pipeline material, population 

density 

MHIDAS 
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Author (Year) Causal factors Background factors Data sources** 

(Bubbico 2018) Corrosion failure, equipment failure, 

excavation failure, incorrect 

operation, material failure of pipe or 

weld, natural force damage, other 

outside force damage, other incident 

causes 

Commodity transported, pipe 

material, location, corrosion 

protection system 

US DOT 

 

*Hydrological (crossing of river, groundwater depth, zone of landslide, lithography, soil permeability); Anthropogenic (land use, population density, 

street crossing, railway crossing, sewage system, aqueduct crossing, electrical system, other utilities); Technical factors (operating pressure, 

diameter, wall thickness, burial depth, maximum operating pressure, specified minimum yield strength, year of construction, metal joint, number of 

internal and external imperfections, absence of metal in the imperfections. 

**US DOT GTG – United Stated Department of Transportation, Gas Transmission and Gathering, NEB – Canada National Energy Board; EGIG – 

European Gas Pipeline Incident Data Group; CONCAWE – Conservation of Clean Air and Water in Europe; UKOPA – United Kingdom Onshore 

Pipeline Operators' Association; TransPetro – Petrobras Transporte S.A.; MHIDAS – Major Hazard Incident Data Service. 

A summary of articles on causal analysis of pipeline incidents 
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The objective of the present study is set to understand how pipeline incident data was 

analyzed in the literature and identify the scope of improvement of the analysis. The study 

examines the frameworks used to classify the causal factors of the incident data from various 

databases and reports and found that the difference is minimal. Distribution of the causal factors 

and corresponding failure rates are compared for the datasets considered. Since one dataset 

allowed reporting of multiple causal factors for a single incident, it is studied further to understand 

its importance. Association between causal factors and a few selected background factors are 

investigated to identify the dependence of the factors. Influence of underlying factors on causal 

factors and their interdependence are also studied. Finally, the relative importance the different 

factors collected by the organizations and the limitations of the current analysis techniques are 

discussed. Associativity and causality of various types of factors and causes established to the 

pipeline incident are discussed. It is concluded that without a proper causal model, the 

understanding of the pipeline failure is partial and flawed.  

2.2 Pipeline Incident Data 

The current analysis investigates pipeline incident data from three data sources originating from 

three regions: US PHMSA, Canada National Energy Board (NEB), and European Gas Pipeline 

Incident Data Group (EGIG). US PHMSA maintains four separate incident databases for hazardous 

liquid (Banimostafa et al.), natural gas transmission and gathering (GTG), natural gas distribution 

(Wu et al.), and liquified natural gas (LNG). PHMSA pipeline infrastructure has 347,020 km 

(215,628 miles) of pipeline for crude oil, refined products, and natural gas liquids, 513,070 km 

(318,807 miles) of pipeline for gathering and transmitting natural gas, 3.5 million km (2.2 million 

miles) for distributing gas to homes, businesses, and other industrial sites, and a relatively smaller 

LNG pipeline network (Pipeline and Hazardous Materials Safety Administration 2019). Following 

the PHMSA incident reporting criteria, operators submit an incident report for each failure in their 

pipeline system. PHMSA authority then reviews the incident reports and updates the failure causes 

using a structured cause mapping. The structured cause mapping is a method by which the operator 

submission data is reorganized by PHMSA to fit into a structured map to bring consistency in the 

data that has been collected over the years. This dataset is known as flagged data, which contains 

failure causes as ‘mapped cause’ and ‘mapped sub-cause’. Mapped cause is a list of direct cause 

of failure (e.g., corrosion, excavation damage) and mapped sub-cause is a list of more detail causes 

of mapped cause. For instance, sub-cause for corrosion which is a mapped cause includes internal 
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corrosion and external corrosion. Mapped cause and sub-causes are used in the current study. 

PHMSA started collecting the incident data in 1970 and the incident reporting system have gone 

through several changes since then. The current reporting system started in 2010 and contains 606 

data fields (e.g., date of incident, location, operator name, cause) for each incident. In the present 

study, incident records (flagged file) of HL database (3,755 incident records) and GTG database 

(1,157 incident records) for the period of 3/10/2010-5/31/2019 have been considered (Pipeline and 

Hazardous Materials Safety Administration 2019).  

The Canadian pipeline incident database from NEB (National Energy Board) which covers 

73,000 km of pipeline operation is also considered in the analysis. 1,297 incident records from 

1/2/2008 – 4/4/2019 are used. It contains 102 data fields including apparent cause (what happened) 

and underlying cause (why it happened) (Canada Energy Regulator 2019).  

EGIG is a cooperation of seventeen gas transmission operators in Europe (Gasconnect, 

Austria; Fluxys, Belgium; NET4GAS, Czech Republic; DGC, Denmark; Gasum, Finland; GRT Gaz, 

France; TIGF, France; Open Grid Europe, Germany; Gas Networks Ireland, Ireland; Snam Rete Gas, Italy; 

Gasunie, Netherlands/ Germany; REN Gasodutos S.A., Portugal; EUSTREAM, Slovak Republic; 

ENAGAS, S.A., Spain; Swedegas A.B., Sweden; SWISSGAS, Switzerland; National Grid, UK) 

(European Gas Pipeline Incident Data Group 2018).  It has been gathering pipeline incident data 

collected since 1970 and publishing analysis reports based on the collected data. The 10th EGIG 

report, which is used in the current analysis, was published in 2018 (European Gas Pipeline 

Incident Data Group 2018). The report contains 208 incident records that were collected on 

142,794 km of pipelines between 2007-2016.  

Causal factors distribution and failure rates will be determined for failure data obtained 

from all three data sources, PHMSA, NEB and EGIG. The time period and span in which the data 

was collected are similar and comparable. A summary of data and definition used for the present 

analysis are given in Table 2.3. 
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Table 2.3 A summary of data and definition used for causal analysis of pipeline incidents 

Data source Year Number of records Mileage covered Data used 

PHMSA HL 2010-2019 3,755 347,020 km Causal factors, 

Background factors 

PHMSA GTG 2010-2010 1,157 513,070 km Causal factors 

NEB 2008-2019 1,297 73,000 Km Causal factors,  

Underlying causes  

EGIG 2007-2016 208 142,794 km Causal factors, 

Causal factor: a major unplanned, unintended contributor to an incident that if eliminated would have 

either prevented the occurrence of the incident, or reduced its severity or frequency 

Background factors: have associations with pipeline failure and the likelihood of the failure due to the 

causal factor, however, because of their inherent characteristics they cannot be responsible for the failures 

Underlying cause: a fundamental, underlying, system-related reason why an incident occurred that 

identifies one or more correctable system failures 

 

2.3 Causal Factors in Incident Data 

2.3.1 Comparison of causal factors 

PHMSA classifies causal factors into 7 categories (1. corrosion, 2. natural force damage, 3. 

excavation damage, 4. other outside force damage, 5. material/ weld/ equipment failure, 6. 

incorrect operation, and 7. all other causes). With mapped sub-causes, cause-classification forms 

a causal-tree with more detailed information. For instance, the mapped cause “Corrosion” is sub-

divided into “Internal corrosion” and “External Corrosion" as Sub-cause. Another level of 

information may also be available for some sub-causes such as type of corrosion (e.g., general 

corrosion, localized pitting, or galvanic corrosion), information about cathodic protection.  

NEB uses a similar classification for causal factors as PHMSA with 7 categories (1. defect 

and deterioration, 2. corrosion and cracking, 3. equipment failure, 4. incorrect operation, 5. 

external interference, 6. natural force damage, and 7. other causes). In addition to cause 

classification, NEB requires the reporting of 9 underlying causes of an incident (1. engineering 

and planning, 2. maintenance, 3. inadequate procurement, 4. tools and equipment, 5. standards 

and procedures, 6. failure in communication, 7. inadequate supervision, 8. human factors, and 9. 

natural or environmental forces). The one NEB feature that stands out is reporting of multiple 

causes for one incident suggesting that more than one cause can lead to a failure.  
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EGIG report uses 6 categories for the causal factors (1. external interference, 2. corrosion, 

3. construction defect/material failure, 4. hot tap made by error, 5. ground movement, and 6. other 

and unknown). Each category contains additional information as well.  

Table 2.4 compares the categories of causal factors responsible for pipeline failure in 

PHMSA, NEB and EGIG incident datasets. All three datasets have similar schemes for 

classification of causal factors. All three of them have Corrosion, Natural Force Damage (EGIG 

calls it Ground Movement), and Other Cause categories. PHMSA has two categories, namely, 

Excavation Damage and Other Outside Force Damage for External Interference as defined by 

both NEB and EGIG. On the other hand, both PHMSA and EGIG have a single category for 

Material and Equipment Failure as opposed to NEB’s two separate categories for Equipment 

Failure and Defect and Deterioration. There are a few ambiguities or inconsistencies among the 

classification schemes, such as, it is inconclusive if the third-party damage is included in EGIG’s 

External Interference category or Incorrect Operation is under Hot Tapping made by Error. 

Nevertheless, it is evident from the table that major cause categories from all three pipeline systems 

are based on similar principles and almost identical.
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Table 2.4 Comparison of causal mapping of pipeline incident data 

Pipeline Incident Causes and Sub-Causes 

PHMSA, USA NEB, Canada EGIG, Europe 

Corrosion Corrosion and Cracking Corrosion 

Internal corrosion 

External corrosion 

(General corrosion, localized pitting, other) 

(Galvanic corrosion, atmospheric corrosion, stray 

current corrosion, microbiological corrosion, 

selective seam corrosion) 

Damage or deterioration mechanism:  

Cracking (Fatigue, Corrosion fatigue, Stress corrosion cracking, 

Hydrogen induced cracking, Mechanical damage delayed cracking) 

Material loss (Internal material loss, External material loss, Poor 

condition of external coating, Disbondment, Holidays, Issue with 

impressed current) 

Appearance (General, Pitting, Cracking) 

In-line inspected (yes, no, unknown) 

Location (Internal, External, Unknown)  

Excavation Damage External Interference External Interference 

Operator/ contractor excavation damage, Previous 

damage due to excavation, Third party excavation 

damage 

Substandard conditions:  

Congestion or restricted action; Defective tools (Equipment or materials); 

Fire and explosion hazards, Inadequate guards or barriers, Inadequate 

information or data, Inadequate instructions or procedures, Inadequate or 

improper protective equipment, Inadequate preparation or planning, 

Inadequate support or assistance, Inadequate warning system, Poor 

housekeeping or disorder, Presence of harmful materials  

Weather related (Frozen components, High winds, Adverse weather, 

Heavy rains or floods, Temperature extremes, Wildland fire, Lightning) 

Damage or deterioration mechanism:  

External interference (Third party, Vandalism, Company contractor, 

Unknown) 

Geotechnical failure (Construction or undermining) 

Activity having caused the incident (Digging, 

Piling, Ground works)  

Equipment involved in the incident (Anchor, 

Bulldozer, Excavator, Plough) 

Installed protective measures (Casing, 

Sleeves) 

Other Outside Force Damage 

Electrical arcing from other equipment/ facility, 

Fire/ explosion as primary cause, Fishing or 

maritime activity, Intentional damage, Maritime 

equipment or vessel adrift, Other outside force 

damage, Previous mechanical damage, Vehicle not 

engaged in excavation 

Incorrect Operation Incorrect Operation Hot Tap Made by Error 

Damage by operator or operator's contractor, 

Incorrect equipment, Incorrect installation, Incorrect 

valve position, Other incorrect operation; Overfill/ 

Damage or deterioration mechanism: Other Causes (Improper 

operation) 

Substandard acts: Failure to check or monitor, Failure to communicate 

or coordinate, Failure to follow procedure or policy or practice, Failure to 
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Pipeline Incident Causes and Sub-Causes 

PHMSA, USA NEB, Canada EGIG, Europe 

overflow of tank/ vessel/ sump, Pipeline/ equipment 

over-pressured 

identify hazard or risk, Failure to react or correct, Failure to secure, Failing 

to use PPE properly, Failure to warn, Horseplay, Improper loading, 

Improper placement, Improper position for task, Under influence of 

alcohol and/or other drugs, Using equipment improperly 

Material/Weld/Equip Failure Equipment Failure Construction Defect/Material Failure 

Construction, installation or fabrication-related, 

Defective or loose tubing/fitting, Environmental 

cracking-related, Failure of equipment body, 

Malfunction of control/relief equipment, 

Manufacturing-related, Non-threaded connection 

failure, Other equipment failure, Pump or pump-

related equipment, Threaded connection/coupling 

failure 

 

 

Damage or deterioration mechanism: 

Electrical power system failure (Electrical fault, Arc flash) 

Equipment (Valve seals or packing, Gasket/O-ring, Ancillary 

equipment); Other Causes (Control system malfunction) 

Defect details (Hard spot, Lamination, 

Material, Field weld or unknown) 

Pipeline component type (Straight, Field 

bend, Factory bend) 

Type of defect (Construction or material) 

 

Defect and Deterioration 

Damage or deterioration mechanism: 

Construction (Other defective welds, Defective other joint, Overbending, 

Defective pipe or component body, Wrinkle or buckle, Defective 

circumferential weld, Dent) 

Material or manufacturing (Defective circumferential weld, Defective 

pipe or component body, Defective longitudinal seam weld) 

Structural degradation (Corrosion fatigue, Other chemical degradation, 

Overheating, Weeping, Damage to reinforcement fibers) 

Natural Force Damage Natural Force Damage Ground Movement 

Earth movement, Heavy rains/floods, High winds 

Lightning, Other natural force damage, Temperature 

Damage or deterioration mechanism: Geotechnical failure (Scouring, 

Wash-out or erosion, Flotation, Soil subsidence/ slope movement, Frost 

heave, Landslide) 

Other causes (Unknown) 

Type of ground movement (Dike break, 

Erosion, Flood, Landslide, Mining, River or 

unknown) 

All Other Causes Other Causes Other and Unknown 

Miscellaneous, Unknown  Sub-causes out of category (Design error, 

Lightning, Maintenance error) 
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2.3.2 Distribution of causal factors 

Table 2.5 presents the distribution of causal factors and the failure rate due to each factor from the 

PHMSA HL database (2010-2019), PHMSA GTG database (2010-2019), NEB database (2008-

2019), and EGIG report (2007-2016) for time periods indicated in the parentheses. Pipeline failure 

rates are expressed in per 1,000 km-year for all causal factors i.e., number of failures per 1,000 km 

per year for each causal factor. Total operating lengths (i.e., pipeline mileage) as mentioned in 

section 2 are used to calculate the failure rate. Analysis follows the categories of causal factors 

described in the previous section and are compared in Table 2.3. Percentage distribution of causal 

factors are presented graphically in Figure 2.3. Equipment Failure for PHMSA HL, PHMSA GTG, 

and NEB data and External Interference for EGIG report are found to be the most frequently 

occurring causal factor. Corrosion appears to be the second most frequently occurring causal factor 

in PHMSA HL, GTG, and EGIG data and External Interference for NEB data. Failure rates for 

PHMSA HL and NEB data are higher than the PHMSA GTG or EGIG failure rates suggesting 

failure rate of hazardous liquid pipelines is higher than that of natural gas pipeline. It should be 

noted that PHMSA GTG and EGIG are gas transmission pipeline whereas PHMSA HL is 

hazardous liquid pipeline. NEB regulated pipelines include approximately two-third length of 

natural gas pipelines and the remaining one-third are liquid substance.  

NEB dataset contains 21.4% incidents where multiple causal factors, termed as 

combination factors, have been reported as cause of failure and the next section will focus on such 

incidents.  
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Table 2.5 Number of pipeline incidents and their percentage distribution for different causal factors for PHMSA HL, PHMSA GTG, NEB, and EGIG 

datasets are presented. Number in the parenthesis indicates the total number of incident and percentage distribution is shown above that. All 

failure rates are converted to number of failures per 1,000 km-year. 

Data source 
US PHMSA HL  

(2010 – 2019) 

US PHMSA GTG  

(2010 – 2019) 

Canada NEB 

(2008 – 2019) 

Europe EGIG 

(2007 – 2016) 

Causal factors 
% (#) of 

incidents 

Failure rate 

/1000 km-year 

% (#) of 

incidents 

Failure rate 

/1000 km-year 

% (#) of 

incidents 

Failure rate 

/1000 km-year 

% of 

incidents 

Failure rate 

/1000 km-year 

Corrosion 
20.1  

(727) 
0.227 

19.1  

(228) 
0.048 

11.0  

(139) 
0.163 25.0  0.037 

External 

interference 

5.8  

(208) 
0.065 

18.5  

(214) 
0.045 

17.1  

(216) 
0.253 28.4 0.043  

Incorrect 

operation 

14.1  

(511) 
0.159 

5.6  

(65) 
0.014 

10.8  

(137) 
0.160 3.9 0.006 

Equipment 

failure 

45.2  

(1635) 
0.509 

31.4  

(363) 
0.077 

20.5  

(259) 
0.303 

17.8 0.027 

Material failure 
7.2  

(260) 
0.081 

11.3  

(131) 
0.028 

10.8  

(137) 
0.160 

Natural force 

damage 

4.5  

(161) 
0.050 

7.9  

(92) 
0.019 

4.7  

(60) 
0.070 14.9 0.022 

Others 
3.2  

(114) 
0.036 

5.5  

(64) 
0.013 

3.6  

(46) 
0.054 10.1 - 

Combination 

factors  
- - - - 

21.4  

(270) 
0.316 - - 
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Figure 2.3 Distribution of causal factors for PHMSA HL, PHMSA GTG, NEB and EGIG incident data 

2.3.3 Appearance of causal factors in combination 

NEB database allows reporting of multiple causal factors for one incident, unlike PHMSA or EGIG 

datasets. Distribution of casual factors for NEB incident data (see Table 2.5 and Figure 2.3 in 

previous section) illustrates that multiple causal factors have been reported for 270 (21.4%) 

incidents. The analysis of these 270 incidents presented in Table 2.6 identifies the most frequently 

occurring combinations of causal factors and the associations amongst the causal factors. The 

second column of the table indicates the total number of incidents, where an individual causal 

factor appears (be it alone as a single cause, or in combination with other causes) and the third 

column indicates the total number of incidents where an individual causal factor appears only in 

combination with other causal factors. The subsequent columns represent the number of incidents 

where two causal factors occur as combination: two causes being the causal factors named in the 

corresponding row and column of the cell in which the number appears.  For instance, corrosion 

and cracking appears in a total of 172 incidents as causal factor. It appears 139 times alone out of 

the 172 incidents and remaining 33 times in combination with other causal factors. With defect 

and deterioration, it appears 8 times, with equipment failure 5 times, with external interference 9 

times and so on. It is worth noting at this point that in some incidents more than 2 causes, say 3, 4 

or even 5 causes, were identified to occur in combination. But Table 2.6 shows association between 

two causal factors only. This means that if for a single incident 3 causes were identified (say 

corrosion and cracking, defect and deterioration and equipment failure) then Table 2.6 counted 
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this incident both in the cell that corresponded to corrosion and cracking with defect and 

deterioration as well as that which corresponded to corrosion and cracking with equipment failure. 

For this reason, the summation of the cause-combinations in the row corresponding to corrosion 

and cracking is 39, which is higher than the total number of incidents where causal factor corrosion 

and cracking appears as combination (33). This suggests that there are at most 6 incidents where 

more than two causes were reported. For this same reasoning, the summation of the values in the 

second column is greater than the actual number of incidents in the database.  

The top three combinations of causal factors include incomplete operation–external 

interference (130), external interference–equipment failure (33), and incorrect operation–

equipment failure (31). Some causal factors contribute significantly more in combination than 

when contributing alone: for example, 58% of failure due to incorrect operation (from Table 2.6 

by dividing 192 by 329) and 48% of failure due to external interference are due to their combined 

effect (from Table 2.6 by dividing 203 by 419). For others, they alone contribute to a larger number 

of incidents than in combinations. Figure 2.4(a) shows the percentage distribution of the causal 

factors, based on third column (Total number of incidents where causal factor appears in 

combination) of Table 2.6, that appears as combination. This represents 21.4% of the total 

incidents in the database. This is another representation of external interference and incorrect 

operation being the top two contributors to combination causal factors. Figure 2.4(b) is based on 

column two of Table 2.6, which represents total number of occurrences of any causal factor alone 

or in combination in the entire database. It redistributes the causal factors in multiple cause 

incidents and merges it with incidents, where they also contribute alone. It shows a significant 

jump in contribution to incidents by incorrect operation and external interference.  
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Table 2.6 Multiple cause contributions for an incident (from NEB database) 
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Causal factor  

Corrosion and cracking  172   33 139     8   5     9   14   3   0 

Defect and deterioration  174   37  137  16   12   11   2   0 

Equipment failure 333   74   259   33   31   3   1 

External interference 419 203    216 130 17   5 

Incorrect operation 329 192     137   4   4 

Natural force damage   89   29      60   1 

Other causes   54     8       46 

Total 1570 576        

  

 

Figure 2.4 (a) Percentage distribution of causal factors involving multiple-cause failures (using the data 

on the third column of Table 2.6) (b) Modified distribution of cause contribution to pipeline incidents 

reported to NEB. 
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2.4 Background Factors in Incident Data 

In the incident report form, PHMSA collects information about location, facility, operating 

conditions, and consequence as well as apparent cause of failure. The data includes condition of 

pipeline network at the time of the incident, and it does not change with the outcome of the 

incident. Some of the parameters can be associated with the causal factors shown in Table 2.2, 

such as, commodity transported, year of installation i.e., age of the pipeline network, pipeline 

diameter, pipeline thickness, pipeline material, operating pressure, depth of cover, type of 

operation, population density because of their specific characteristics. However, these are not the 

causes of failure. For instance, consider three such parameters:  commodity transported, pipe 

diameter and year of installation. These are presented in Table 2.7. Each of the parameters has 

several categories. For example, commodity transported includes crude oil, non-HVL (highly 

volatile liquid), HVL (highly volatile liquid), CO2 and biofuel. For each of the commodities, 

number of failures for each causal factor are presented. In a similar way data for pipe diameter and 

installation year are presented in Table 2.7. The data shows that for certain values of the 

parameters, the number of causal factors (and hence the number of incidents) are significantly 

greater than for other values. For example, the total number of incidents involving crude oil 

transportation is about 1.5 times than that of non-HVL, however, corrosion failure in crude oil 

pipelines is thrice that in non-HVL pipeline.  
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Table 2.7 Relationship with background factors with causal factors as obtained from US PHMSA HL 

data 
  US PHMSA HL (2010 – 2019) Causal factors 

 

 

Corrosion 

(752) 

External 

Interference 

(214) 

Incorrect 

Operation 

(536) 

Equipment 

& Material 

Failure 

(1977) 

Natural 

Force 

Damage 

(167) 

All Other 

Causes 

(109) 

C
o

m
m
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d

it
y

 

T
ra

n
sp
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rt

ed
 (

P
ar

t 
B

) Crude oil 521 102 270 881 73 51 

Non-HVL 172 71 195 676 72 37 

HVL 51 40 62 383 22 18 

CO2 7 1 7 36 0 3 

Biofuel 1 0 2 1 0 0 

P
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e 
D
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 i
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in
ch

 (
P

ar
t 

H
) 

0 – 6 63 25 1 30 4 1 

6 – 12 242 93 14 82 15 14 

12 – 18 85 26 4 39 3 1 

18 – 24 60 7 5 21 1 3 

24 –  25 5 1 21 0 6 

In
st

al
la

ti
o
n
 Y

ea
r 

(P
ar

t 
I)

 

Pre 1920 2 0 0 0 0 0 

1920-29 14 2 1 8 0 1 

1930-39 19 4 2 3 0 2 

1940-49 43 19 7 24 7 4 

1950-59 101 43 18 85 13 2 

1960-69 68 32 23 102 14 6 

1970-79 70 23 21 103 14 12 

1980-89 37 6 9 75 5 5 

1990-99 56 10 12 94 9 5 

2000-09 34 13 41 190 17 8 

2010-19 56 16 181 510 29 17 

 

 The background factors provide valuable insight regarding the causal factors, which 

otherwise cannot be extracted from overall data. Consider Table 2.8, 2.9, 2.10, representing 

association of three background factors (commodity transferred, pipe diameter, and installation 

year) with one causal factor: corrosion. The data from the third column of Table 2.7 regarding 
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corrosion failure is further processed for the three background factors. Table 2.8 presents the five 

categories of commodity transferred (crude oil, non-HVL, HVL, CO2, and biofuel), corresponding 

mileage, number of incidents, calculated percentage of incident, and calculated individual failure 

rate. The failure rate is calculated by normalizing (dividing) the number of incidents with the 

mileage and years of operation. Such analysis unravels the fact that the failure rate for crude oil 

transportation is almost double that of the average failure rate due to corrosion while the failure 

rate of HVL is significantly lower than the average failure rate due to corrosion (almost one-fifth). 

Similarly, Table 2.9 and Table 2.10 show the variations of failure rates with different categories 

of background factors. For pipe diameter, failure rates are lower for larger diameter pipes than 

smaller ones. A decreasing corrosion failure rate is observed for pipes with more recent installation 

dates. Similarly, more associations can be derived between other causal factors and background 

factors.  

It appears that background factors can influence the causal factors but given the data it is 

not possible to identify the relationship between a causal factor with a given background factor. 

This is because a single background factor may not directly influence a causal factor; in fact, it is 

possible that multiple background factors may be at work behind a causal factor. However, the 

number of associations a single causal factor holds with a variety of background factors are large.  

In the data collected, for each causal factor, the background factors varied in each incident 

(different conditions of each parameter) and hence, drawing direct relations between all 

background factors with a particular causal factor, or understanding the dependency of causal 

factors on background factors, is not possible under the current circumstances.  

Table 2.8 Association between commodity transferred and corrosion from US PHMSA HL data 

Corrosion (Total incident: 752; failure rate: 0.227 failures/1000 km-year) 

Commodity Mileage # of incidents % of incidents Failure rate 
% deviation 

from average 

Crude oil 80750 521 69.3 0.427 88.1 

Non-HVL 62711 172 22.9 0.181 20.3 

HVL 70267 51 6.8 0.048 78.9 

CO2 5206 7 0.9 0.089 60.8 

Biofuel 15 1 0.1 4.408 1841.9 

Total 218949 752  0.227  
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Table 2.9 Association between pipe diameter and corrosion from US PHMSA HL data 

Corrosion (Total incident: 752; failure rate: 0.227 failures/1000 km-year) 

Pipe diameter Mileage # of incidents % of incidents Failure rate 
% deviation 

from average  

0 – 6 in 34160 63 8.4 0.122 46.3 

6 – 12 in 104641 242 32.2 0.153 32.6 

12 – 18 in 29450 85 11.3 0.191 15.9 

18 – 24 in 24625 60 8.0 0.161 29.1 

24 – in 17930 25 3.3 0.092 59.5 

Unknown 218949 277 36.8 0.084 63.0 

Total 218949 752  0.227  

 

Table 2.10 Association between installation year (pipeline age) and corrosion from US PHMSA HL data 

Corrosion (Total number of incidents: 752; average failure rate: 0.227 failure/1000 km-year) 

Installation 

Year (Part I) 
Mileage 

# of 

incidents 

% of 

incidents 

Failure rates (number of 

failures/1000 km-year) 

% deviation 

from average 

Pre 1920 479 2 0.3 0.276 21.6 

1920-29 1907 14 1.9 0.485 113.7 

1930-39 5051 19 2.5 0.249 9.7 

1940-49 14821 43 5.7 0.192 15.4 

1950-59 33783 101 13.4 0.198 12.8 

1960-69 34080 68 9.0 0.132 41.9 

1970-79 29930 70 9.3 0.155 31.7 

1980-89 17609 37 4.9 0.139 38.8 

1990-99 18687 56 7.4 0.198 12.8 

2000-09 16956 34 4.5 0.133 41.4 

2010-19 36896 56 7.4 0.100 55.9 

Unknown 218949 252 33.5 0.076 66.5 

Total 218949 752 100.0 0.227  
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2.5 Underlying Causes in NEB Incident Data 

2.5.1 Distribution of underlying causes 

Unlike PHMSA and EGIG, NEB collects underlying causes (“why it happened”) in addition to 

causal factors (“what happened”). Some organizational or management system elements are 

identified as underlying causes that may contribute to any causal factor. Distribution of underlying 

causes on how they affect the incidents are plotted in Figure 2.5. The NEB allows identification 

of multiple causal factors in an incident. It also allows multiple underlying causes to be identified 

for each incident but does not relate the causal factors with the identified underlying causes. 

Maintenance (35%), Engineering and Planning (19%), Human Factors (12%) and Standards and 

Procedures (11%) are identified as the top four dominant underlying causes. These underlying 

causes are defined by NEB as follows (National Energy Board 2019):  

Engineering and Planning: failures of assessment, inadequate planning or monitoring, 

inadequate specifications or design criteria, lack of evaluation of change, or 

implementation of controls 

Maintenance: inadequate preventive maintenance or repairs, failure to maintain excessive wear 

and tear 

Inadequate Procurement: failures in the purchasing, handling, transport and storage of required 

materials 

Tools and Equipment: improper use or inadequate tools and equipment 

Standards and Procedures: inadequate development, communication, use, maintenance or 

monitoring of standards and procedures 

Failure in Communication: loss of communication with automatic devices, equipment or 

people 

Inadequate Supervision: lack of oversight of a contractor or employee during construction or 

maintenance activities 

Human Factors: individual conduct or capability, or physical and psychological factors, and  

Natural or Environmental Forces: external natural or environmental conditions.  
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Figure 2.5 Percentage distribution of underlying causes of pipeline failures data from NEB 

2.5.2 Relation of underlying causes and causal factors 

Associations between the causal factors and underlying causes of NEB pipeline failure data are 

presented in Table 2.11. The number in each cell represents the number of incidents where a causal 

factor and an underlying cause appeared together. In other words, it expresses what underlying 

cause acted behind the failure of an incident for each causal factor. For instance, maintenance is 

reported as an underlying cause in 102 incidents out of 172 incidents where corrosion and cracking 

was reported as a causal factor. Thus, poor maintenance is responsible for almost 60% of corrosion 

related incidents. All associations with 100 or more incidents between a causal factor and an 

underlying cause are highlighted with amber and associations with more than 50 but less than 100 

incidents with yellow (see Table 2.7). It is evident from the analysis that maintenance is the single 

most important underlying cause affecting all major causal factors. Engineering and planning and 

human factors are other two significant underlying causes. Another interesting observation is that 

corrosion and cracking, defect and deterioration, and equipment failure are primarily affected by 

a single underlying cause maintenance. Similar remark can be made for natural force damage and 

natural or environmental forces. However, external interference and incorrect operation are 

influenced by multitude of underlying causes suggesting management of these causal factors will 

be much more challenging than the others because of the possible interplay among the underlying 

causes.  
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Table 2.11 Relationship with causal factors and underlying causes as obtained from NEB data 
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Corrosion and 

cracking 
172   63  4   6 1  2 102  6 17 10 

Defect and 

deterioration 
174   41  5  13 4  5 124  3 32  6 

Equipment 

failure 
333   62  5  29 5 14 222 15 30 22 

External 

interference 
419 134 36  93 8 43 111 55 76 66 

Incorrect 

operation 
329   64 43 131 9 65  91  8 81 54 

Natural force 

damage 
  89   27  0   0 0  0  18 67  2  0 

Other causes   54   10  0   4 0  0  37  2  0  4 

 

2.5.3 Association among underlying causes 

To understand the interplay among the underlying causes, the associations of the underlying causes 

as evident from NEB data are presented in Table 2.12. This is like Table 2.6. Analysis determines 

the number of appearances where the underlying causes act alone (diagonals) in the background 

to an incident and where they work in combination (non-diagonals) with others. Maintenance (431 

alone out of 581 total incidents: 74%) and natural or environmental forces (99 alone out 120 total 

incidents: 83%) appears to be a type of causes that work alone most of the time. On the contrary, 

engineering and planning (205 alone out of 324 total incidents: 63%), human factors (78 alone 

out or 192 total incidents: 41%), standards and procedures (83 alone out of 184 total incidents: 
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45%), and tools and equipment (46 alone out of 106 total incidents: 43%) appear to act together 

with other underlying causes. Significant and moderate combinations are highlighted in amber and 

yellow, respectively.  

Table 2.12 Dependencies of underlying cause contributions as obtained from NEB data 
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Engineering and planning 324 205 19 31 6 13 61 11 23 15 

Failure in communication  61  14 19 0 8 8 0 9 7 

Human factors 192   78 4 23 20 1 24 20 

Inadequate procurement  16    2 1 1 1 1 0 

Inadequate supervision  80     19 2 0 1 2 

Maintenance 581      431 6 34 12 

Natural or environmental 

forces 
120       99 0 2 

Standards and procedures 184        83 2 

Tools and equipment 106         46 

 

2.6 Pipeline Incident Investigation Reports  

2.6.1 Available incident investigation reports 

In an excel spreadsheet, there were records of 109 incident investigation reports, as shown in 

Appendix A1. Out of these 109 reports, 64 of them are of type “hazardous liquid”, 40 of them “gas 

gathering and transmission”, and the remaining 5 of them are of type “natural gas”. There were 81 

incident investigation reports downloaded from PHMSA website. 32 of the reports where incidents 

occurred before 2010 and remaining 77 occurred after 2010. 26 of them involved corrosion, 43 of 

them equipment/ material failure, 9 of them excavation, 15 of them incorrect operation/ operator 

error, 5 of them natural force damage and a few for other reasons. Out of these 109 reports 
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mentioned in the excel spreadsheet, 81 of them could be successfully downloaded as pdf files. To 

make the analysis consistent with the incident records, incident reports prepared after 2010 

involving hazardous liquid have been selected. 64 of such reports were identified. However, only 

41 of the reports or in other words pdf files were readable. A summary of these reports was given 

in Appendix A2.  

The summary showed that incident investigation reports are varied by possible root causes 

and the investigation reports are not very lengthy suggesting not in-depth. Mostly, investigations 

were conducted to examine one specific topic and the reports were made accordingly.   

2.6.1 General Structure of the Incident Investigation Reports 

Although the purpose and the techniques used for the incident investigations varied, there is a 

general common structure identified in the reports. Some common features identified are: 

• General Introductory Form 

• Executive Summary 

• System Details 

• Events Leading Up to the Failure 

• Emergency Response 

• Summary of Return-to-Service (Also referred to as return to service, or summary of 

restart plan and return‐to‐service, or preliminary safety measures) 

• Investigation Details 

• Findings and Contributing Factors 

• Appendix 

A few less used headings include 

• Pipe Specifications 

• Analysis 

• Conclusion 

We have highlighted before that it would be impossible for someone to study all incident 

investigation reports manually and make an expert and reasonable judgement of the root causes or 

contributing factors. From this perspective, efforts have been made to identify the sections and 

sub-sections that can be studied or examined using a computer. For instance, the photographs or 

images or plots are a great way of conveying the findings to the reader. Sometimes information 
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and data gathered are presented in tabular fashion very efficiently and effectively. However, when 

viewed from the context of usefulness to a computer code, such tools (images, plots, or tables) are 

identified as less effective. Rather long detail conversational aspect, typically avoided in brief 

reports, are found interesting and useful. Some sections that were found useful are:   

• Executive Summary, Conclusion 

o Contain a basic overview of the most useful information pertaining to the pipeline 

failure 

• Events Leading Up to the Failure, Emergency Response, Summary of Return-to-Service 

o Contain information about what happened before, during and after the pipeline 

failure 

• Investigation Details, Findings and Contributing Factors 

o Contain useful information about the investigation into the pipeline failure and the 

pipeline failure itself 

• Analysis 

o Contains information about post-incident analysis of pipeline materials 

o Could be very useful for cases where corrosion has occurred as this section will 

provide in-depth detail about material damage, etc. 

2.7 Comparison of Descriptions of Incident Data and Findings of Incident Investigation 

Reports  

In this study, two different datasets were used to identify the causal factors behind the pipeline 

incidents. However, discrepancies may exist between the incident records (reports made right after 

the incidents) and findings from the incident investigation reports. To understand the anomalies or 

differences, 13 corrosion-related incidents in two data sources and 7 randomly selected not 

corrosion related incidents were identified and studied, as shown in Table 2.13 
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Table 2.13 List of incident investigation reports that were considered for the analysis 

Report # Investigation Report File Name Map Cause 

20100045 Whitecap OCS HL 2010-03-25 508 Other Outside Force 

Damage 

20100054 Sunoco RM HL PA 2010-03-25 Material/ Weld/ 

Equipment Failure 

20100146 Chevron HL UT 2010-06-11 Other Outside Force 

Damage 

20100147 Suncor HL WY 2010-6-14 Incorrect Operation 

20100163 Dixie_HL_GA_20100705 Excavation Damage 

20100179 Magellan Ammonia HL NE 2010-07-23 Material/ Weld/ 

Equipment Failure 

20100317 Chevron HL UT 2010-12-01 Incorrect Operation 

20100014 Mid-Valley Pipeline HL TX 2010-03-01 Corrosion 

20100042 SFPP HL CA 2010-03-16 Corrosion 

20100287 Shell_Pipeline_2010-11-16 Corrosion 

20110080 133500_Sunoco_2011-2-8 Corrosion 

20110120 Buckeye_HL_PA_2011-03-20 Corrosion 

20120141 Enterprise_West_Tank_Farm_Cushing_OK_2012-4-8 Corrosion 

20120232 Buckeye HL PA 2012-07-13 Corrosion 

20120366 Magellan 2012-11-25 Corrosion 

20130130 Lion_Oil_Magnolia_Tank_2013-03-09 Corrosion 

20130208 Enbridge 2013-05-17 Corrosion 

20140333 Buckeye HL NJ 2014-8-20 Corrosion 

20150224 Plains_Pipeline_LP_2015-5-19 Corrosion 

20150464 Enterprise_2015_12_1 Corrosion 

 

The records below summarized findings of the comparisons between incident records obtained 

from the narratives and the select sections of the incident investigation reports. Sections that were 

selected from the incident investigation reports are  

Section List = ['Contributing Factors', 'Contributory Causes', 'Findings', 'Findings & Contributing 

Factors', 'Findings and Contributing Factors’, 'Investigation Findings & Contributing Factors', 

'Investigation Findings and Conclusions', 'Investigation Findings and Contributing Factors'] 

This comparison has been made manually to understand the reports better and devise a plan for 

the natural language processing technique.  
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Table 2.14 List of incidents that were compared between incident reporting database and incident 

investigation reports  

Parameter Report # Description 

Level of 

causes 

20100287 

 

Incident record narrative mentioned both apparent cause "external 

corrosion" and deeper cause “operational pressure fluctuating" 

Incident record narratives contain findings after investigation was done 

thus had same level of cause information that was mentioned in 

investigation report. 

20120141 Incident record narrative only mentioned "internal corrosion"  

Investigation report mentioned deeper cause which was related to 

maintenance 

20120232 Both Incident record narrative and investigation report mentioned 

corrosion was due to low cycle fatigue cracking 

While investigation report provided more insights saying placement of 

unused leak detection tubes near the failure location might contribute to 

low cycle fatigue 

20140333 Incident record narrative mentioned apparent cause “internal 

corrosion” and mentioned it was likely caused by MIC 

Investigation report stated multiple factors leading to MIC 

20120366 Both Incident record narrative and investigation report mentioned 

crevices and atmospheric corrosion.  

Report also mentioned deeper causes which are related to pipe design 

and pipe location which did not allow convenient atmospheric corrosion 

inspection. 

20130208 Incident record narrative did not mention apparent cause - internal 

corrosion or bacteria in the narrative.  

Investigation report does not have a section that belongs to the section 

list. Apparent causes and organizational causes such as no inhibition and 

maintenance issue were mentioned in “Conclusions” 

20150224 Investigation report detailed many issues with insufficient detection 

systems, ineffective protections against external corrosion, and a lack of 

timely response. These issues were not discussed in the incident record 

narrative 

Data structure 20100317 Deeper cause due to lack of valve winterization program was not 

mentioned in incident record narratives, but was mentioned in the field 

“Operation Details” 

20130208 Investigation report does not have a section that belongs to the section 

list. Apparent causes and organizational causes such as no inhibition and 

maintenance issue were mentioned in “Conclusions” 

20130130 Investigation report does not have a section that belongs to the section 

list. Only one sentence mentioned the cause - deposit corrosion in the 

section of "conclusions" 
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Parameter Report # Description 

20130208 "Findings and contributing factors" section does not mention causes 

leading to failure, instead, only talks about inappropriate detection and 

responses. Another section "Conclusions" mentions the apparent cause 

“internal corrosion” and organizational causes leading to inappropriate 

responses 

20150464 Investigation report does not have a section that belongs to the section 

list. Only one sentence mentioned internal corrosion in the section 

"Conclusions" 

Different 

terminologies 

20150464 Incident record narratives did not mention “internal corrosion”, instead, 

it said "the pinhole was caused by carbon dioxide attack of the pipe" 

Facts not 

contributing 

to incidents 

20100042 Incident record narrative contains a long paragraph about details of 

responses 

“Findings and contributing factors” section in the investigation report 

contains facts such as "no indications of cracks or corrosion were 

found..." 

20100054 Incident record narrative mentioned "no corrosion of the flange faces or 

other mechanical damage was observed" 

20100287 “Findings and contributing factors” section in the investigation report 

contains the facts such as "no manufacturing defect", “did not determine 

whether MIC contribute to failure" 

20120141

  

Incident record narratives mentioned "inhibitor has been added" 

20140333 Investigation report mentioned "no evidence of external corrosion" 

Incident record narratives mentioned “A six day investigation into the 

incident involved excavation, isolation, and pressure testing of the 12 

inch bayway line shipper manifold area of the station”. Excavation here 

was not causes but was one of investigation activities 

Incident record narrative mentioned "there was no pressure indicated or 

recorded that would show the failure was caused by a pressure above the 

mop." 

Varying 

content 

20108080 

20100287 

20110120 

20140333 

20130130 

Extracting knowledge about event chains leading to failures can be 

difficult. Most narratives do not provide such information but mentioned 

a lot about how responses were taken. 

 

In summary, most of the incident record narratives mention apparent causes clearly. Compared to 

the level of causes that are covered in incident record narratives and investigation report, 

investigation reports provided causes other than apparent causes more often. Incident record 
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narratives formats are consistent, and the inputs may not be consistent. causes could be shown in 

multiple fields. On the other hand, investigation report formats were not consistent. Most reports 

have a section in the section list to discuss about contributing factors, but some reports do not have 

such section. Inconsistent terminologies may bring difficulties in interpreting text mining results. 

Incident record narratives and the interesting sections in investigation reports could have facts 

which are not contributing to incidents. Such information could be misinterpreted as causes. 

Cautions are needed. 

  



53 
 

3.0 EXTRACTION OF NECESSARY INFORMATION FROM INCIDENT DATA AND 

INCIDENT INVESTIGATION REPORTS USING NLP 

3.1 Objective   

To develop an ANN model, data from past incidents need to be gathered. All incidents must be 

investigated to determine what went wrong and data must be recorded in a consistent manner. 

Different root causes analysis or incident investigation techniques have been adopted in the past 

to identify different causes and investigation reports expressed the causes in a variety of ways. 

Root cause or failure analysis had different fields of origin (such as safety-based root cause failure 

analysis, production-based root cause failure analysis) and what may appear as root cause may 

provoke further questioning to determine deeper hidden causes in another. Thus, for the selection 

of inputs, it would be essential to determine a reference that defines what will be termed as root 

cause. Using taxonomy so that similar terms are used to refer to related root causes can help tackle 

this issue. At the same time, identified root causes may be present in a way that cannot be used for 

measurement. This problem is increased when human and organizational factors are identified as 

root cause. For example, an investigation may find lack of maintenance as a root cause. This does 

not provide any measured value that can be used as an input. However, if the percentage of deferred 

maintenance and the length of deferred maintenance were measured for the system at the time of 

incident, then it would provide a quantitative assessment of the condition the pipeline system was 

in at the time of the incident. Thus, investigation findings will have to be recorded in a manner that 

will enable information related to the root cause to be expressed in terms of quantifiable indicators. 

For a similar reason, the output for the investigations will have to be expressed in terms of severity 

levels. 

Thus, the first challenge would be to identify a methodology to build a set of cue words or 

taxonomy so that root causes analysis conducted for different incidents identify similar causes 

using similar terms and these causes will have to be identified in terms of measurable 

deviations/indicators so that they can be compared with deviations existing in a system to 

understand if the system is reaching an unsafe state. It will produce a consistency among the reports 

of root cause analysis to enable extraction of information from those reports to build a learning 

model and then compare them with the current condition of the system to predict failure. If a set 

of cue words are developed to produce all reports, extraction of information using automated 

systems based on text mining or data mining can be used.  
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3.2 Current Approach Using Natural Language Processing (NLP) 

Incidents records collected by several federal agencies, such as the Pipeline and Hazardous 

Materials Safety Administration (PHMSA), Occupational Safety and Health Administration 

(OSHA), or Bureau of Safety and Environmental Enforcement (BSEE) form large databases, and 

can be a great learning resource if properly utilized (Yu et al. 2017, Halim et al. 2018, Quddus et 

al. 2018, Halim et al. 2020). The key to learning from the past incident records is to identify the 

underlying causes of the incidents (Halim et al. 2018, Halim et al. 2020). In the case of PHMSA, 

incident records are collected from operator submission and then post-processed to a more 

structured format for the ease of analyzing pipeline incidents through years. The post-processed 

incident records include a cause category and a short description for each incident, associated with 

much other information (Pipeline and Hazardous Materials Safety Administration 2019). There 

are seven cause categories pre-defined to categorize direct causes of the incidents that are reported 

by operator, including corrosion, equipment failure, material failure, natural force damage, 

excavation damage, incorrect operation, and others. Taken advantages of the structured 

information in the PHMSA database, extensive studies have been conducted on the direct causes 

and contributions from relevant other factors on pipeline failure (Bersani et al. 2010, Cunha 2012, 

Bubbico 2018, Halim et al. 2020). However, none has focused on the underlying causes and 

contributory factors such as organizational, managerial or personnel issues regarding the failure 

since such information is not always reported by operators and it only can be addressed in free-

text incident descriptions if applicable (Pipeline and Hazardous Materials Safety Administration 

2019). Thus, incident descriptions can be a great resource to identify underlying causes and 

contributing factors of pipeline incidents. Searching through thousands of such descriptions is not 

only tedious but almost humanely impossible. Given the usefulness of identify underlying causes 

(Pyun et al. 2020, Zhang et al. 2020) and contributory factors (Adedigba et al. 2016, Naghavi-

Konjin et al. 2020), it would be interesting and worthwhile to explore the capability of natural 

language processing (NLP) as an option to automatically extract valuable knowledge from pipeline 

incident descriptions.  

NLP is primarily concerned with programming computers to process, understand, interpret, 

and manipulate human language (Manning and Schütze 1999, Manning et al. 2014). NLP can be 

used in a variety of different tasks, fields and industries for sentiment analysis, text classification, 

question answering, etc. Text mining, also known as text data mining, is referred to the process of 
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transforming text data to numeric data that can be then analyzed by data mining algorithms (Miner 

et al. 2012). Applications of NLP or text mining techniques in the field of process safety have been 

reported to automate content analysis of vast amount of incident text data(Chokor et al. 2016, 

Tanguy et al. 2016, Tixier et al. 2016, Goh and Ubeynarayana 2017, Nakata 2017, Syeda et al. 

2017, Verma and Maiti 2018, Zhang et al. 2019, Single et al. 2020). There are mainly two 

approaches to develop an automated content analysis system (Allahyari et al. 2017): NLP with 

hand-coded rules (Tixier et al. 2016, Nakata 2017, Verma and Maiti 2018, Single et al. 2020), and 

(2) NLP with machine learning algorithms (Tulechki 2015, Chokor et al. 2016, Tanguy et al. 2016, 

Goh and Ubeynarayana 2017, Syeda et al. 2017, Zhang et al. 2019). The first approach is to 

develop an NLP system based on pre-defined causality and/or dictionaries of key words by human 

experts. Tixier et al. (2016) utilized this approach to extract precursors and outcomes from 

construction injury reports. By manually pre-defining a list of words that mean causes and effects 

based on the attribute-based framework proposed by Esmaeili and Hallowell (2012), the developed 

NLP algorithm is able to scan incident reports, detect words that match the pre-defined tokens, and 

generate a summary tabulating all the key words for each report. Even though this method exhibits 

satisfying accuracy, it requires intensive labor to develop domain-specific dictionaries and results 

in loss of information as text data is manually reduced to limited tokens (Robinson et al. 2015). 

Nakata (2017) proposed a text-mining method to construct the flows of events based on aviation 

incident reports by extracting meaningful words (i.e., noun, proper noun, verb, and adjective) from 

a bag-of-word of neighboring two sentences. The underlying assumption is that one verb is 

indicative of one event. However, order of words was ignored in the study as reported which 

otherwise may have provided more information about causality.  

To improve the autonomous capability of the content analysis system, the second approach 

of combining NLP with machine learning algorithms, is employed. Researchers investigated the 

strength of support vector machine (SVM) on classification of aviation incident reports (Tanguy 

et al. 2016). Although classification of some events can achieve the accuracy above 95%, the 

results are not consistently satisfying. Later on, six supervised machine learning algorithms 

including SVM, K-nearest neighbor (KNN), decision tree, logistic regression, random forest, and 

Naïve Bayesian are evaluated on classification of 1,000 construction accident narratives, finding 

that SVM produces the best results with precision ranged from 0.5 to 1 (Goh and Ubeynarayana 

2017). An even better classification performance is achieved by an ensemble model consisting of 
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five classifiers including 6 algorithms except random forest. The weight of each base classifier in 

the ensemble model is optimized with cross-entropy loss as the objective function by sequential 

quadratic programming (Zhang et al. 2019). While these works illustrate how supervised learning 

techniques can be used in classifying documents, it is only applicable when pre-defined categories 

exist in the dataset. To explore the strength of unsupervised learning, Chokor et al. (2016) 

employed NLP with K-means clustering to categorize incidents based on the type of incident from 

the incident description. The limitations of this study include the sample size and specificity of the 

geographical area used. Use of topic modeling with NLP techniques to infer the latent structure of 

entities and build a causation model was found promising with a showcase of 6 railway incident 

reports (Syeda et al. 2017). There is a need to gain better understanding into the strength of NLP 

and unsupervised learning techniques on analyzing the incident text data and inferring causal 

relationships. 

The current work focuses on using NLP and text mining techniques to extract contributing 

factors and latent causality of pipeline incidents. Instead of classifying documents, both K-means 

clustering, and co-occurrence network approach are employed to examine 3,587 incident 

narratives collected from PHMSA incident database to generate clusters of words that are likely 

to be contributory factors and form causal dependency. Techniques of dimensionality reduction, 

including principal component analysis (PCA) and t-Distributed Stochastic Neighbor Embedding 

(t-SNE), are evaluated regarding the clustering application. Even though PCA has been extensively 

used in process safety, such as identifying the inherently benign path of chemical synthesis 

(Srinivasan and Nhan 2008, Banimostafa et al. 2012), early detection of the process fault (Pyun et 

al. 2020), and human factors assessment (Omidi et al. 2018), this work demonstrates the limitation 

of PCA and the advantage of t-SNE when dealing with highly nonlinear dataset.  

The remaining of this paper is organized as follows. In Section 2, the procedure of incident 

data collection and preprocessing, methods of text analytics, and the overall workflow of analysis 

are set out. Section 3 presents the results: causation model developed based on K-means clustering 

and co-occurrence network analysis. Section 4 concludes the work done. 

When pipeline operators report pipeline incidents to PHMSA, the major cause of incident is 

selected from a pre-defined list in the reporting form. A supplemental “comment” section in the 

reporting form allows the operators to provide a narrative description on the incident from where 

any additional contributing factors can be extracted to form a more comprehensive causation 
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model of the incident. Due to the unstructured nature of the “comment” section, NLP with K-

means clustering, and text mining techniques of co-occurrence network are applied to mine the 

hidden knowledge. Before employing the techniques, data collection and preprocessing steps are 

required. 

3.3 Methodology Involving NLP Extracting Necessary Information   

As mentioned previously, the source of data in the present work is the incident narratives from the 

“comment” section of each incident record. Certain preprocessing steps are used to transform the 

text data into a more digestible form for machine learning and text mining algorithms. It should be 

noted that even though preprocessing is considered common for NLP tasks, the operations and the 

sequence of steps are not always agreed upon due to the widely varying nature of task. In the 

current work, the Natural Language Toolkit (NLTK) package is applied for the following 

preprocessing steps (Loper and Bird 2002): 

Tokenization: In tokenization, the text is split into tokens, which are essentially the individual 

words that make up a string of text. For instance, in the string “a mechanical seal on the pump 

failed” there are 7 total tokens. 

Noise removal: This step is to remove tokens which barely add value to and/or even interfere with 

text analysis. The removed tokens include punctuations, whitespace, number, dates, and 

stopwords. Numbers and dates are excluded as these tokens are hardly relevant to contributing 

factors and causality. Thus, removed are stopwords which are referred to as extremely common 

words yet providing little value to analysis of the content, such as “an” and “the”. The stopwords 

list used in the present work is from NLTK corpus.  

Lemmatization: Lemmatization is the process of reducing words down to their base forms, or 

lemmas. For instance, words like am, are, and is can all be reduced to be. Lemmatization considers 

the context of a word as it is used in a sentence. For instance, the word pump can be a verb or a 

noun depending on the context of its usage. Attention to context is what differentiates 

lemmatization from stemming. Stemming can be used as a faster alternative to lemmatization. 

Though, what stemming gains in speed, it sacrifices in linguistic accuracy (Toman et al. 2006). 

Words like pump for instance, might only have one stem, regardless of whether the word is used 

as a noun or verb. In general, the current project values accuracy over speed, so lemmatization of 

words gets the priority over stemming instead.  
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Filtering: Besides noise removal, an additional filter is set as the last step of preprocessing to 

improve the performance of NLP and text mining techniques. There are meaningful words but too 

general to create insights. For instance, the word “pipeline” does not belong to any published list 

of stopwords, but in this work, it provides no additional information because it has been known 

that the text data are collected from a pipeline database. Moreover, the existence of “pipeline” may 

interfere the construction of causal model as it can possibly appear in the results of word clusters 

created by text mining algorithms. The list of filtering words is determined by a trial-and-error 

method based on the word clusters. A detailed discussion on filtering step is presented in Section 

3.3.3.  

3.3.1 Text to features 

After preprocessing, narratives of each incident record are converted to clean and normalized 

tokens. To apply machine learning and text mining techniques, these tokens are further 

transformed into numeric features representing the text dataset. Two methods of feature extraction 

are presented in this section.  

Term frequency-inverse document frequency (TF-IDF) 

A weighing scheme of term frequency-inverse document frequency (TF-IDF) was first proposed 

by Jones (1972) to evaluate the importance of words in a collection of documents and has gained 

popularity in the field of NLP and text mining (Salton and Buckley 1988, Ramos 2003). TF-IDF 

calculates the relative frequency of each unique word in a specific document via inverse proportion 

of the documents containing that word, thus producing a term-document matrix of TF-IDF scores. 

Under this method, higher weights are assigned to the words that are not commonly observed 

across the dataset but obtain high frequency in a few documents. The following formula is applied 

to calculate TF-IDF value for a term t in a document d in the term-document matrix: 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑) ∗ 𝑖𝑑𝑓(𝑡) =  𝑡𝑓(𝑡, 𝑑) ∗ log (
𝑁

𝑑𝑓(𝑡)
+ 1)  

where tf(t, d) is the frequency of term (or word) t in document (or incident record) d, N is the total 

number of documents in the dataset, df(t) is the number of documents containing the term t in the 

document set, namely the document frequency. To account for the scenario where a term appears 

in every document, resulting in zero idf(t), one is added inside the logarithmic term for idf(t) 

calculation. As the equation above generates the TF-IDF score for every term t in every document 

j, the TF-IDF matrix is produced with dimension of N*M, where M is the total number of unique 
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words in the dataset. The matrix then becomes the input dataset to be analyzed by K-means 

clustering algorithm.   

Co-occurrence matrix 

Unlike the term-document matrix of TF-IDF weights, co-occurrence matrix defines entities both 

in rows and columns as a unique word present in the text dataset, thus a word-word matrix to 

evaluate linkage between words. A co-occurrence of two words is determined when they both 

appear in the same document with the distance less than a certain window size (Veling and Van 

Der Weerd 1999). Thus, word co-occurrence works irrespective of appearance frequency. By 

scanning through the pre-processed text dataset, a co-occurrence matrix is built with dimension of 

M*M, where M is the total number of unique words present in the dataset. Under this treatment, 

each unique word is vectorized in terms of its co-occurring frequency with other words, which 

plays a fundamental role to further develop co-occurrence networks.  

3.3.2 Methods of text analytics 

To extract contributing factors and latent causality of incidents, clusters (or networks) of words 

with strong connections need to be identified at first by NLP and text mining algorithms. Then 

construction of causation models from word clusters or networks can become feasible. The current 

work explores the strengths of two analytical methods, namely K-means clustering and co-

occurrence networks.  

K-means clustering 

Clustering analysis has been one of the most important topics in unsupervised learning, and K-

means clustering is the most used clustering technique (Chokor et al. 2016, Allahyari et al. 2017). 

To be noted, this study applies unsupervised learning even though there is a “cause” label for each 

incident record, because the current objective is to mine the hidden knowledge of narrative 

comments beyond a single cause classification assigned by PHMSA. When K-means clustering is 

applied to the 3587 incident narratives (or documents), the documents with similar statistical 

pattern of TF-IDF scores tend to fall into the same cluster, and thus the words with accumulated 

high TF-IDF scores can be used to induce the hidden association of events. In TF-IDF matrix, each 

incident narrative is represented by a vector containing M elements of TF-IDF score where M is 

the total number of unique words in the dataset. Thus, the distance of documents can be calculated 

based on the distance of vectors. With K-mean clustering, the vectorized documents in TF-IDF 

matrix are partitioned into K distinct clusters based on Euclidean distance to the centroid of a 



60 
 

cluster (Wagstaff et al. 2001). A greedy algorithm is utilized to minimize the objective function J 

formulated as the within-cluster sum-of-squares (WCSS):  

𝐽 =  ∑ ∑ ||𝑚𝑗 − 𝑥𝑖
(𝑗)

||2

𝑛

𝑖=1

𝑘

𝑗=1

 (2) 

where mj is the centroid of the jth cluster, n represents the total number of documents. Since it starts 

with an initial partition with K clusters and the objective function (WCSS) always decreases with 

an increase in the number of clusters K, thus it can only be minimized for a fixed number of 

clusters. Scikit-learn, a Python-based machine learning package (Pedregosa et al. 2011), is used in 

the present work to perform K-means clustering. The elbow method is employed to determine the 

number of clusters (K) by plotting the WCSS versus K. This method assumes the percentage of 

variance explained by the clustering algorithm as a function of the number of clusters and thus 

identifies the optimal K when the contribution of adding one more cluster becomes negligible 

(Bholowalia and Kumar 2014). The elbow plot of the K-means clustering in this study is displayed 

in Figure 3.1 and the “elbow” point is observed when the number of clusters is 5. This is considered 

a reasonable value as the PHMSA HL database has 7 pre-defined cause categories.  

 

Figure 3.1 The elbow plot based on within-cluster sum-of-squares (WCSS) versus number of clusters 

Topic Modeling 

Topic modeling has been primarily employed to discover topics and latent relationships from a 

large set of text sources. By assuming that words occur or co-occur as a natural result of semantic 

pattern, any document in the context of topic modeling is viewed as a bag-of-word (a collection of 

terms without consideration of the appearing sequence) (Robinson 2019). As compared to 

unsupervised learning techniques (e.g., K-means clustering) that relies on document-term matrix, 
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topic modeling splits the document-term matrix into the matrices of documents to a certain number 

of topics, and the matrices of individual topics to their constituent terms, resulting in identification 

of topics with weightings and the inferred constituent words. The differences between topic 

modeling approaches are on the statistical model applied to split the document-term matrix. Latent 

Dirichlet allocation (LDA), a Bayesian inferential statistical approach, as one of the most popular 

topic modeling approaches is utilized in the present work. 

Co-occurrence network 

Co-occurrence network is a graph of word interactions representing co-occurring patterns in the 

text data (Zhang et al. 2018) and has been widely used for many graph-based NLP applications, 

such as key object extraction (Mihalcea and Tarau 2004) and word sense discrimination (Ferret 

2004). In the co-occurrence matrix, each unique word is represented by a vector containing 

elements of its co-occurrences with other words. Jaccard similarity coefficients, a measure of 

similarity between two sets of data by counting shared and distinct elements, are calculated to 

evaluate the strength of connections for all possible combinations of two words (Romesburg 2004). 

Given that causality lies in the network of words that are most strongly connected, a threshold 

value of Jaccard coefficient is set to only include words with strong co-occurrence in the network 

diagram.  

This work utilizes an open-source linguistic software, KH Coder (Higuchi 2016), to 

construct the co-occurrence network diagram. Nodes are defined as target words with node size 

representing the word frequency and strength of edges are determined by the value of Jaccard 

coefficient between two nodes. KH Coder package employs a graph drawing method by force-

direct placement to arrange the layout of networks (Fruchterman and Reingold 1991), and thus the 

graphical distance between words is irrelevant to its co-occurrence which is only indicated by 

edges between words. Certain words that are more closely associated with one another forms a 

community (or subgraph) coded by a certain color in the diagram. In the co-occurrence network 

diagram, several communities are observed, suggesting different types of events in the text data. 

Words within the same community are likely to carry a causal relation.  

3.3.3 Workflow of NLP and text mining 

Based on the methodology, the overall workflow of NLP and text mining of incident narratives is 

depicted as Figure 3.2 starting from preprocessing of narrative data to the end results of co-

occurrence networks and K-means clusters. The preprocessing procedure follows the steps 
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explained in the previous sub-section. Attention should be paid to a customized filtering of general 

words relevant to the context yet not value-adding to new insights of contributing factors and 

causality, such as “pipeline”, “area”, and “station”. To determine the list of filtering words in the 

testing phase, a trial-and-error method is used by evaluating the results from K-means clustering 

and co-occurrence networks. When words appearing in the clusters or networks are not providing 

insights, they are listed in the filter, and the final list of filtering words are formed after a few 

iterations of the procedure. The effect of the filtering step is demonstrated in Figure 3.3 with word 

cloud of narrative data before and after the filtering. For example, words like “line”, “area” and 

“determined” are removed in the filtering step because they are not able to contribute to 

development of causation models. The words such as “release”, “operator” and “shut” that are 

more indicative of causality stand out in the word cloud after the filtering step. Admittedly, this 

manual step introduces subjectivity to the workflow, but it offers a fine-grained investigation on 

causality hidden in the text data. This filtering mechanism in nature is to apply domain expertise 

to helps resolve common difficulties in clustering analysis of unsupervised learning. The general 

words listed in the filter are provided in the supplemental material. 

 

Figure 3.2 Overall workflow of NLP and text mining of incident narrative comments 
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Figure 3.3 Word clouds of high frequency objects in the narratives before (left) and after (right) the 

filtering step 

An extra step of dimensionality reduction applied after K-means clustering is to visualize and 

evaluate the clustering results by condensing the vectors into a two-dimensional representation. In 

this work, principal component analysis (PCA) as a linear technique and t-Distributed Stochastic 

Neighbor Embedding (t-SNE) as a non-linear technique are investigated. The comparison of 

results is discussed in next sub-sections.  

3.4 Results Produced by NLP Using Incident Records  

3.4.1 K-means clustering 

K-means clustering is applied on TF-IDF matrix and produces clusters of documents with top 

words based on the accumulated TF-IDF scores. As determined by the aforementioned elbow 

method, the clustering results with K equal to five is explored. Meanwhile, evaluating K-means 

clustering algorithm is challenging due to the nature of unsupervised learning. Even though there 

is a considerable amount of research developing evaluation metrics (Halkidi et al. 2001, Amigó et 

al. 2009), the present work validates the clustering results by using techniques of dimensionality 

reduction to visualize the clusters of words. Both PCA and t-SNE are explored to transform high 

dimensional TF-IDF matrix into a two-dimensional representation and a comparison of the two 

methods is demonstrated in Figure 3.4. The result by t-SNE shows that the five clusters are well 

separated while a significant portion of overlapping is observed in the result by PCA. Apparently, 

t-SNE exhibits a strong advantage on visualizing nonlinear high-dimensional data over the 

commonly used PCA (Van der Maaten and Hinton 2008) and is applied in the present work. To 
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be noted, the clustering visualization produced by t-SNE may vary in terms of the shape and 

relative location of clusters when utilizing random initialization scheme due to its stochastic 

nature, but the five clusters are observed to be consistently well separated to demonstrate the 

validity of clustering results.  

 

 

Figure 3.4 Two-dimensional visualization of clustering results with K = 5 by PCA (left) and t-SNE (right) 

To visualize the clustering results, word clouds are constructed by the top 50 words in each of the 

five clusters shown in Figure 3.5 with the size of words based on the accumulated TF-IDF scores. 

There are certain levels of insights on contributing factors and causation indicated by this 

visualization. Considering Cluster 3 as an example, the words “leak” and “release” refer to the 

failure scenario, “contaminated” and “soil” are related to the consequence of the leak or release, 

“crude” and “oil” suggest the material involved, “internal” and “corrosion” can indicate the cause 

of failure which matches one of the seven pre-defined cause labels, the words “flange”, “valve” 

and “gasket” refer to the equipment where abnormality exists which refers to another cause label 

(equipment failure) defined by PHMSA, the words “notified”, “excavated” and “replaced” indicate 

the emergency responses, and “pressure” can be the contributing factor to internal corrosion or 

equipment failure. Thus, a cause-and-effect storyline of the pipeline incident can be constructed: 

the abnormal “pressure” leads to “internal corrosion” of pipeline “valves”, the “crude oil” is then 

leaked to the ground and “soil” is “contaminated”, and the emergency response team is “notified” 

to “excavate” the soil for remediation and the corroded valve is “replaced”. This induced causation 

can be validated by a sample incident caused by corrosion with reference # 20100005 in Appendix 

A as the aforementioned storyline captures the main events in the actual incident narrative. A 

detailed validation can be found in Section 3.4.3. Other clusters can be developed into similar 

storylines following the same approach. In Cluster 1, there are named entities like “suction”, 
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“vibration”, “pump” and “booster” present together with “mechanical”, suggesting mechanical 

failure of equipment as a potential cause, “crude oil” indicates the material involved, and “release” 

can be the consequence of pipeline incidents. Cluster 2 has words like “discharge”, “overfill” and 

“overflow” refer to specific scenarios of incorrect operation and the presence of “thermal” can be 

induced as a cause factor of the aforementioned abnormal operating conditions. The top words in 

Cluster 4 are “leak”, “release” and “valve” indicating the consequence, and “maintenance” and 

“drain” could be causes. Entities related to equipment appear in the top words of Cluster 5 such as 

“mixer”, “tank”, and “seal” which suggest where “leakage” and “release” occur, and the causal 

factors of “internal” and “external” “corrosion” can be identified. Thus, the K-means clustering 

results can provide insights on contributory factors of incident and its disadvantages are clear as 

well: a certain amount of manual interpretation and domain expertise is required to derive insights 

on the casual dependency from the clusters and it is still laborious to identify the words with casual 

relations from a number of associated words.  

 

Figure 3.5 Word clouds of the total 3567 narratives developed by the top 50 words in each of the five 

clusters ranked by accumulated TF-IDF scores 
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3.4.2 Co-occurrence network analysis 

Co-occurrence network has been employed by Syeda et al. (2017) to showcase the capability of 

NLP and text mining in safety research, but its application and analysis are hardly illustrated in 

detail. As K-means clustering can only produce clusters of associated words and fails to reveal 

word-word relations within the cluster, co-occurrence network is applied to overcome this 

limitation. The results of the total 3587 incident narratives are shown in Figure 3.6 with the 

threshold value of Jaccard coefficient as 0.18 (only including strong co-occurrence). The Jaccard 

coefficient is determined on a trial-and-error basis to include enough information in the diagram 

while still maintaining clarity of the diagram. The edge indicates whether co-occurrence exists 

between two nodes (or words). A group of words that possess strong co-occurrence with one 

another forms a community (or subgraph) in a specific color. Dashed edges suggest that words are 

of co-occurrence but in different communities. Unlike clusters generated by K-means clustering, 

the structure composed by nodes and edges in each community naturally forms a hierarchy of 

causation. Each community (or subgraph) with sufficient number of nodes typically leads to a 

storyline which describes a typical incident scenario. When interpreting the network results, 

subgraphs with too few nodes should be neglected and two connected subgraphs can also be 

merged into one storyline by appropriate interpretation. 

The network structure in subgraph no.1 (in green) can construct an incident scenario: when 

an “operator” “closes” a “valve”, abnormal “pressure” is observed, and later “release” happens; 

three measures are taken (correspondingly three branches of edge are present) - safety “personnel” 

come to “isolate” the incident site, measurements are taken to “contain” the releasing gas, and 

“notification” is sent with an “estimate” of releasing “volume” and a report on “response” of this 

“emergency”. It should be noted that the subgraph no.1 is connected to subgraph no.2 (in yellow) 

via the node “personnel”, and the storyline can be expanded as the safety “personnel” come to not 

only “isolate”, but also “control” the “release”, “shut” down the “pump”, and “notify” relevant 

agencies. The development of this storyline requires less amount of manual work and is more 

straightforward following the linkage between nodes. Another subgroup no.3 (in Purple) probably 

represents that due to a “release”, “soil” is “contaminated” and is later “excavated” or “removed” 

for “recovery”. Or it can be as simple as that “internal” “corrosion” is identified as the major cause 

and the corroded part is “sent” to conduct “metallurgical” analysis as shown by subgroup no.6 (in 

Orange). It is also true for all the other communities in the diagram. Obviously, co-occurrence 
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exhibits strong performance in extracting contributing factors and revealing causality of incidents 

than K-means clustering. However, the co-occurrence network diagram of more than 3500 incident 

narratives can inevitably omit important contributing factors. For example, although “internal 

corrosion” is present in the subgraph no.6 of Figure 3.6, no further casual relations of corrosion 

are revealed.  

To overcome this limitation, incident narratives under specific cause labels predefined by 

PHMSA are selected to construct co-occurrence network diagrams. Two illustrative cause labels 

are chosen: “corrosion” composed of 722 narratives with results shown in Figure 3.7 and “natural 

force damage” of 161 narratives with results shown in Figure 3.8. Due to the high word frequency, 

“corrosion” in Figure 3.7 is present in subgraph no.1 as a major node with more connected edges 

compared to its presence in Figure 3.6. A detailed cause-and-effect storyline of corrosion is 

unfolded following its connected nodes: “internal corrosion” occurs in the “tank” causing “release” 

of “crude oil”, and “impact” of the incident is that “soil” is “contaminated” and then gets 

“excavated” to “recover”; meanwhile, as emergency response to the “corrosion”, relevant 

“personnel” is “notified” and “dispatched” to the “field” to “control” and “shut down” the pipeline. 

The proposed storyline is similar to the one developed from Cluster 3 in Section 3.4.1 but requires 

considerably less amount of manual interpretation and domain expertise from practitioners. 

Similarly, fine-grained contributing factors are identified when using the narratives under the cause 

label of “natural force damage”. Natural factors such as “hurricane”, “flood”, “heavy rain” and 

“lightning strike” are observed in Figure 3.8, which are omitted in Figure 3.4. The network diagram 

in Figure 3.8 can also be converted to a storyline following the connected nodes. Thus, the 

capabilities of automated content analysis of co-occurrence network are demonstrated with 

apparent advantage over unsupervised learning techniques such as K-means clustering. 
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Figure 3.6 Co-occurrence network diagram of a total of 3587 incident narratives from PHMSA HL 

database 
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Figure 3.7 Co-occurrence network diagram of 722 incident narratives under the cause of “corrosion” 
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Figure 3.8 Co-occurrence network diagram of 161 incident narratives under the cause of “natural force 

damage” 

3.4.3 Validation 

While the co-occurrence network analysis of narrowed-down narratives under specific cause labels 

demonstrates strength of capturing latent dependency and causality of pipeline incidents, the 

network structure still comes from a large number of incident records that may have occurred from 

different scenarios, so the stories stated above may not be representative of all those incidents 

together (since each incident may have propagated in different ways). To validate the NLP-based 

analysis above, sample narratives are selected from the 3567 incident narratives as shown in Table 

3.1. The authors perused the sample narratives and manually highlighted the key words (shown in 

bold) of incident descriptions. Several key objects in the samples such as “internal corrosion”, 

“release”, “crude oil”, “soil”, “excavated”, and “pressure” are captured by the co-occurrence 

networks in Figure 3.6 and 3.7, and proposed storyline provides a straightforward way to describe 

the incidents. Key details in the samples with cause of natural force damage such as “lightning 
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strike”, “drain” are omitted in Figure 3.6, but are captured in Figure 3.8 with a narrowed-down 

narrative dataset. However, the limitations of co-occurrence network analysis are also observed by 

comparing to the sample narratives: there are still some key information in the samples that are 

absent in the network diagrams, such as “power outage”, “ammonia smell” and “evacuations”; (2) 

certain amount of domain expertise from practitioners are still required and a typical example is 

the interpretation of “contaminated soil” which could be mistakenly identified as a contributing 

factor of corrosion if the practitioners are not familiar with pipeline incidents; (3) the proposed 

storyline could be misleading as the network diagrams may miss key information, and as an 

example, “no other defect” and “defect” have opposite meaning, but with only “defect” present in 

the network, the constructed storyline can deviate from the fact.  

 

Table 3.1. Sample incident narratives selected from PHMSA HL database (2010-2019) 

Report 

Number 
Cause Narratives 

20100005 
Corrosion 

failure 

Internal corrosion on 10-inch pipeline resulted in release of crude oil. 

Spill impacted an area measuring 20' x 30' x 7'. Did not occur on road, 

water, or ditch.  Impacted soils were excavated and remediated on-site.  

Pipeline was inactive and upon cleanup activities, this segment of the 

pipe was removed entirely. 

20100014 
Corrosion 

failure 

Lion oil called Sunoco control room to initiate a delivery to mid-valley 

pipeline at longview station. Sunoco control center advised Lion that 

when mvpl personnel completed the line up for delivery, Sunoco cc 

would advise Lion to start delivery. Lion appears to have started actions 

for the delivery prior to being notified by Sunoco cc that line up was 

complete. This resulted in a higher than normal line pressure at the 

Longview station manifold yet the pressure was within the design limits. 

This higher pressure appears to have caused the failure at the point 

where internal corrosion had occurred. Re-submitted on 3/19/2013 to 

include part e5f per phmsa request. 

20100037 

Material 

failure of pipe 

or weld 

A report of ammonia smell was phoned into the city of Pawnee police 

department. Magellan operations control center was notified by the city 

of Pawnee police department at 6:22 pm Tuesday, January 12, 2010. The 

Skedee fire department and Magellan employees responded. 
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Report 

Number 
Cause Narratives 

Evacuations included 6 families. The release was located near/at mile 

post 58. The release was on the buried pipe. The section of the pipe where 

the release occurred was removed and repaired and the section was sent 

in for metallurgical analysis. Due to restrictions of the online form, 

question 14 "shutdown time" was omitted, but later added. The line was 

shut down at 18:25 upon notification for investigation. Release was 

verified at 19:08. This report was mailed 2/12/10 as the online reporting 

was not active. 

20100081 

Material 

failure of pipe 

or weld 

On April 17, 2010 at approximately 11:30 am local time, while 

performing investigative follow-up work after a brush fire crossed lines 

1 and 2, Enbridge environmental representative discovered and reported 

what appeared to be a small amount of oil on the right of way at mp 

997.79. Lines 1 and 2 were shut down as a precaution and Enbridge 

pipeline maintenance personnel were dispatched to investigate. After 

hand-excavating the impacted area, a small crack was discovered and 

confirmed on the longitudinal seam of line 2 at approximately 7:00 pm 

local time. The defect was located in a marshy area and the site access 

and investigation progress was hampered by poor site access and ground 

conditions. External notifications to the national response center and 

Minnesota state duty officer were made upon confirmation of the leak. 

Notifications were also made directly to the Minnesota office of pipeline 

safety, phmsa, Minnesota pollution control agency and the Minnesota 

interagency fire center. Once the pipe was excavated the entire long 

seam of the joint of pipe in question was field assessed by nde (both ut 

and magnetic particle inspection). No other defects were identified. An 

integrity assessment was completed by Enbridge's pipeline integrity 

group and the pipeline was repaired using a plidco split sleeve. The 

return to service plan was reviewed with phmsa and mnops and line 2 

was restarted on April 18 at approximately 7:10 pm. The integrity 

assessment of this line segment is ongoing and the section of pipe in 

question will be cut out for further metallurgical analysis when 

conditions allow. Enbridge environment group is managing site cleanup 
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Report 

Number 
Cause Narratives 

and restoration in conjunction with a number of agencies (both local and 

state). A metallurgical analysis was conducted and the leak was found to 

be the result of a hook crack that was formed at the time of pipe 

manufacture which subsequently extended by fatigue through the 

remaining thickness of the pipe.  there was no evidence that was found 

to suggest that either post manufacturing mechanical damage or 

corrosion had contributed to the flaw responsible for the leak.  The 

amount of contaminated soil removed from the leak site was 30 cubic 

yards. 

20100039 
Equipment 

failure 

The spill was a result of a crack in the flange of an existing cast iron 

valve. The cast iron valve was bolted to a cast steel flange. The old cast 

iron valve was replaced with a cast steel valve. 

20100166 
Equipment 

failure 

The location of the release is a pump station owned and operated by 

TransCanada keystone pipeline, lp (TransCanada). The pump station is 

in a rural area located at approximately three miles south of Roswell, 

south Dakota. The release of petroleum was entirely contained on 

TransCanada property.  The release occurred from a loose fitting on an 

above ground damper system associated with an injection pump. Oil was 

released from the loose fitting for an approximate 3 second period until 

the system was manually shut down. An estimated 100 gallons of oil 

sprayed over an area of approximately 60 feet by 110 feet within the 

pump station location. TransCanada personnel were onsite at time of the 

oil release, the injector pump was immediately shut down and 

containment and recovery activities initiated. A maintenance team 

mobilized to the site upon notification of the release on June 23, 2010 at 

12 noon CDT. The pulsation dampener on the injection pump was 

removed and visually inspected. The inspection revealed the threaded 

nipple was not installed properly and was not the correct length. The 

threaded nipple on the pulsation dampener was replaced. 

20100189 
Natural force 

damage 

A lightning strike caused a power outage, causing the mov to close, 

which resulted in the relief valve opening and overfilling the sump. 

Approximately seven gallons of gasoline were released and seven 
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Report 

Number 
Cause Narratives 

gallons recovered. Impacted soils were place in drums and will be hauled 

off site to an approved facility. 

20100026 
Natural force 

damage 

Tank 824 water drain was leaking crude. Due to extreme temperatures 

in the area, it is believed the roof water drain piping froze and 

compromised the drain piping integrity. When t824 was filled with crude, 

the frozen components thawed allowing product to exit the tank via the 

drain piping. As of 4-7-2010, t824 is still in service. Once removed 

from service, the exact cause can be determined. As of 5-25-2010, t824 

had been taken out of service and cleaned. It was determined that the 

roof drain hose integrity had been compromised in 2 locations due to ice 

expansion. Updated per blaine keener e-mail due to changes in PHMSA 

reporting form. 

 

3.5 Results produced by NLP using Incident Investigation Reports 

3.5.1 Cooccurrence Network Analysis 

Recognizing the significant influence of the quality of data sources (i.e., incident reports) and 

necessity of appropriate supervision in the workflow on the output of analysis, the cooccurrence 

network is observed with significant improvement by two modifications:  

• feeding a subset of collected incident reports preferably under the same major cause and 

even sub-cause (instead of feeding a large number of reports with miscellaneous causes). 

• specifying keywords (i.e., the center of subgraphs in the cooccurrence network diagram) 

chosen using empirical knowledge (instead of top words of frequency) as the role of 

supervision that helps build the cooccurrence network structure toward a more explicit 

causal representation.  

Cooccurrence network diagram of 9 incident reports under the cause of corrosion shown in Figure 

3.9 indicates noticeable improvement on the readiness of the network to be used for automatic 

extraction of contributory factors of pipeline failure. The top five words of frequency is by default 

used as keywords, resulting in 5 subgraphs in the diagram with each key word positioned in the 

center. The “investigation” subgraph linked with other two subgraphs indicates that identification 

of the incident “cause” as “corrosion” and “leak” at certain “location”. The sub-causes (or 
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contributory factors) are clustered around “corrosion” – including “mic” (i.e., microbiologically 

influenced corrosion), “inspection”, “internal” and “external”. The subgraph of “leak” is connected 

to “tank” and “pipeline” subgraphs which are two major equipment where leak mainly occurs.  
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Figure 3.9 Cooccurrence network diagram of 9 corrosion incident reports (a total of more than 15000 

words) with five keywords by default chosen as most frequent words 

However, with keywords chosen rarely by word frequency, certain subgraph may not 

contain valuable information such as the “investigation” cluster that is not directly related to the 

cause-effect relation of the pipeline failure. Thus, cooccurrence network diagram of 9 corrosion 

reports with keywords specifically selected from the word frequency list: “corrosion”, “leak”, 

“tank”, “pipeline”, and “internal” is shown in Figure 3.10. The subgraph of “internal” is connected 

to the “tank” subgraph via “bottom”, suggesting the location of internal corrosion in the tank. All 

the subgraphs are linked with cause-effect relation, contributed to the supervising step of manual 

selection of keywords in the workflow. 
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Figure 3.10 Cooccurrence network diagram of 9 corrosion incident reports with five keywords selected 

with empirical knowledge 

The aforementioned two modifications are further evaluated by feeding a more targeted 

data source. According to PHMSA, corrosion incidents can be classified as (1) corrosion in the 

tank, and (2) corrosion in the pipeline. The 9 incident reports under the major cause of corrosion 

are then split into one set of 4 corrosion-in-tank reports and the other set of 5 corrosion-in-pipeline 

reports. Cooccurrence network diagram of the “tank” reports with default keywords is shown in 

Figure 3.11 where “crude” and “oil” subgraphs are overlapped, and the overall network structure 

is not well-connected to formulate the causality of incident. An improvement is observed in Figure 

3.12 using the specified keywords (i.e., “corrosion”, “leak”, “tank”, “pipeline”, and “internal”), 

which demonstrates the role of supervision on reshaping the cooccurrence network structure. The 

analysis of 5 “pipeline” reports is presented in Figure 5 and 6. While the network structure seems 

well-linked in Figure 3.13 without supervision, subgraphs of “enterprise” and “magellan” are not 

informative to derive causal factors. Figure 3.14 exhibits a greater level of information density by 

specifying keywords directly related to the pipeline such as “valve” and “pressure”. Thus, semi-
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supervised workflow with supervision of specifying keywords (or “center” words) and data source 

selection is found to significantly improve the NLP analysis of incident causality.  

 

Figure 3.11 Cooccurrence network diagram of 4 incident reports of corrosion in the tank (a total of more 

than 6000 words) with five keywords by default chosen as most frequent words 
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Figure 3.12 Cooccurrence network diagram of 4 incident reports of corrosion in the tank with five 

keywords selected with empirical knowledge 
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Figure 3.13 Cooccurrence network diagram of 5 incident reports of corrosion in the pipeline (a total of 

more than 9000 words) with five keywords by default chosen as most frequent words 



81 
 

 

Figure 3.14 Cooccurrence network diagram of 5 incident reports of corrosion in the pipeline (a total of 

more than 9000 words) with five keywords selected with empirical knowledge 

3.5.2 Topic Modeling Analysis 

The topic modeling with LDA is applied to 9 incident reports of corrosion, a subset of 4 reports of 

corrosion in the tank and the other subset of 5 reports of corrosion in the pipeline. All the results 

show (Figure 3.15, 3.16, 3.17) that the topic modeling is able to identify key information of failure, 

but the assumption of neglecting word sequence impedes generating more insights on cause-effect 

relation. 
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Figure 3.15 Topic modeling with LDA applied to 9 corrosion reports 
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Figure 3.16 Topic modeling with LDA applied to 4 reports corrosion in the tank 
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Figure 3.17 Topic modeling with LDA applied to 5 reports corrosion in the pipeline 

3.6 Taxonomy for Causal Analysis 

PHMSA has established a comprehensive mapped cause system that defines the primary or direct 

causes of the incident. As described in the section 2 that it has seven primary causes: corrosion, 

material/weld/equip failure, excavation damage, incorrect operation, natural force damage, other 

outside force damage, and all other causes. Each of these categories has some sub-categories which 

are also well-understood. Beyond these two tiers PHMSA provides opportunities to the operator 

to provide more information through various fields in the incident reporting system such as 

pipeline specification (pipe diameter, pipe thickness, material of construction, year of installation), 

operational specification (pressure, commodity transported, depth of cover), inspection and 

maintenance detail (date of last inspection, inspection methods, prior incident), incident detail 

(date, release amount, asset damage, environmental damage), and incident narratives. This 

information is very valuable and important. In next section, they have been utilized to develop an 

ANN model to predict the pipeline failures. Some of these provided datasets are termed as 
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background factors that have no apparent contribution to the failures. But they do have specific 

relations to the failure data as observed from the literature review and the data presented in 

previous section. For instance, smaller diameter pipeline has no specific reason to fail unless they 

are subjected to a specific operational condition. PHMSA incident records did a brilliant job in 

collecting such background factors over the time. However, they need no to be confused with the 

underlying causes that can lead to an incident. For instance, inadequate maintenance can alone 

cause an incident, but pipe diameter cannot. There is a need to include such underlying causes in 

the incident records for all recorded incidents. The mechanism to do so will need further 

understanding and careful examination. A set such underlying causes has being used by NEB for 

a while. They are well described in the previous section and also given in the table below. There 

are different sets of information that can be helpful as well to better understand the failure 

conditions.     

 

Mapped Causes and Sub-causes 

Corrosion: Internal corrosion, External corrosion (General corrosion, localized pitting, galvanic 

corrosion, atmospheric corrosion, stray current corrosion, microbiological corrosion, selective seam 

corrosion, others) 

Material/Weld/Equip Failure: Construction, installation or fabrication-related, defective or loose 

tubing/fitting, environmental cracking-related, failure of equipment body, malfunction of control/relief 

equipment, manufacturing-related, non-threaded connection failure, other equipment failure, pump or 

pump-related equipment, threaded connection/coupling failure 

Excavation Damage: Operator/ contractor excavation damage, previous damage due to excavation, 

third party excavation damage 

Incorrect Operation: Damage by operator or operator's contractor, incorrect equipment, incorrect 

installation, incorrect valve position, other incorrect operation; overfill/ overflow of tank/ vessel/ sump, 

pipeline/ equipment over-pressured 

Natural Force Damage: Earth movement, heavy rains/floods, high winds, lightning, other natural 

force damage, temperature 

Other Outside Force Damage: Electrical arcing from other equipment/ facility, fire/ explosion as 

primary cause, fishing or maritime activity, intentional damage, maritime equipment or vessel adrift, 

Other outside force damage, Previous mechanical damage, Vehicle not engaged in excavation 

All Other Causes: Miscellaneous, Unknown 
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Underlying Causes 

Engineering and Planning: failures of assessment, inadequate planning or monitoring, 

inadequate specifications or design criteria, lack of evaluation of change, or implementation of 

controls 

Maintenance: inadequate preventive maintenance or repairs, failure to maintain excessive 

wear and tear 

Inadequate Procurement: failures in the purchasing, handling, transport, and storage of 

required materials 

Tools and Equipment: improper use or inadequate tools and equipment 

Standards and Procedures: inadequate development, communication, use, maintenance or 

monitoring of standards and procedures 

Failure in Communication: loss of communication with automatic devices, equipment, or 

people 

Inadequate Supervision: lack of oversight of a contractor or employee during construction or 

maintenance activities 

Human Factors: individual conduct or capability, or physical and psychological factors, 

Natural or Environmental Forces: external natural or environmental conditions 

Background Factors 
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4.0 ACIDENT MODELING USING ANN 

4.1 Objective 

Once it is possible to convert the root cause analysis into suitable extractable data, the next task is 

to build an ANN model. A neural network needs to be developed by training. This refers to using 

known input-output pairs as examples to teach the model to determine the weights between the 

connecting neurons. Since a knowledge-based model that learns from past incidents is the overall 

objective of the ANN, inputs can be those deviations that had contributed to the output, which are 

the consequences of the incidents.  

Records of inspection and maintenance data, laboratory testing and failure analysis can be 

used in conjunction with the past incident records. Past incidents may have occurred in other 

facilities, or locations under different management system and this makes data from past incident 

records generic. Laboratory findings or inspection records for example may contain information 

specific to a site and should not be overlooked just because a large number of past records are 

available. Thus, all information should be fed to the neural network to train it to better predict 

failure. The challenge lies in determining what information should be fed to the training model 

along with those identified in Task 1.  

Once it is determined what information are to be used for training, the task lies in 

developing the actual model via training. Various literature exist that suggest different methods of 

determining the suitable size of ANN model and proposes learning algorithm to determine the 

connection weights that lead to a tolerable error (Lappas 2007, Nuchitprasittichai and Cremaschi 

2013, Cortes et al. 2016) Joghataie et al., 1995]. The best suitable size and algorithm for model 

will have to be selected and training conducted based on findings.  

To train the neural network so that it determines the non-linear relationships between the 

various causes and the consequences, past incident investigation records will be used as training 

examples. If information about pipeline failures can be gathered, 2/3 of the data can be utilized for 

training the network, while the remaining 1/3 can be used later for validation.  

Once the model has been validated, it can now be used for prediction. Information about current 

conditions can be fed to predict the failure probability of pipelines. As new incidents occur, the 

information from them can be constantly used to update the ANN so that better prediction is 

achieved as time goes by.  
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4.2 Current Approach for using Artificial Neural Network (ANN) 

Pipelines are one of the safest modes to transport bulk energy and have failure rates much 

lower than railroads or highway transportation (Carvalho et al. 2008). Yet pipeline failures do 

occur, sometimes with catastrophic consequences (Guo et al. 2016). An accurate risk analysis of 

pipeline incidents can result in an effective prediction of how various conditions contribute to an 

increased risk of such incidents and allow strategic measures to be developed for management 

of the overall risk of pipeline incidents. 

The causes of pipeline incidents can be broadly classified into five categories: corrosion, 

equipment failure, natural force, operational error, and third party induced damage (Dey et al. 

2004, El-Abbasy et al. 2014). Corrosion can be further categorized into internal corrosion which 

is influenced by the internal environment of a pipeline such as material being transported, and 

external corrosion affected by factors such as pipeline coating, cathodic protection measures and 

other factors. Incidents due to equipment failures consist of cracks and fractures that are unable 

to withstand the pipeline flow, and those due to natural force are caused by events such as floods, 

earthquakes, snowstorms, etc. Incidents due to operational error are those that are influenced by 

fluctuations in operating conditions (e.g., pressure), and third-party incidents represent damages 

caused by an operation not carried out by the pipeline operator itself (e.g., excavation done by 

contractors). Among all these causes, corrosion failures comprise about 25% of onshore hazardous 

liquid (Banimostafa et al. 2012), transmission pipeline incidents(Halim et al. 2020), and hence, 

they are ranked as one of the most frequent cause of HL pipeline incidents (Muhlbauer 2004, Davis 

et al. 2006). Effective risk management measures would require a detailed risk analysis of 

corrosion-induced pipeline incidents for informed decision-making purposes.  

In the USA, data report of a pipeline incident is submitted to the Pipeline Hazardous 

Material Safety Administration (PHMSA) by pipeline operators within 30 days of an incident 

(Lam and Zhou 2016). The key data fields collected for the incident contain in-depth information 

about location, facility, operating conditions, number of injuries and/or fatalities, commodity 

released, causes of failure, etc. The total number of data fields collected by the PHMSA for an 

incident is 606. The high number of reported data fields in the PHMSA database indicates the 

detailed information gathered for each incident and presents an opportunity to leverage the detailed 

data for an accurate causal, consequence, probability, and risk analysis of pipeline incidents.  
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Established methods of risk analysis in the pipeline industry rely on using statistical trend analysis 

of past incidents to assess and predict the causes, consequences, and probability of pipeline 

incidents, which are combined to estimate the risk of pipeline incidents (Papadakis 1999, Lam and 

Zhou 2016, Bubbico 2018). Specifically, historical incident databases have been analyzed to derive 

the most frequent cause, the average rate of injury and fatality, and the average rate of incidents to 

quantify cause, consequence, and probability of pipeline incidents, respectively. However, a 

statistical trend analysis without a reasonable understanding of the interplay among key 

contributors of an incident cannot provide a clear understanding of the risk (i.e., cause, 

consequence, and probability) of a pipeline incident. Valuable information is lost in such 

superficial analysis which could otherwise guide decision-makers to identify the issues that drive 

pipelines towards higher incident rates and how these can be managed to reduce the risk 

of pipeline incidents. 

For a deeper understanding of the risk of pipeline incidents, data-based models have 

been developed utilizing methods such as neural network, regression technique, and Bayesian 

methods(Breton et al. 2010, Senouci et al. 2014, Senouci et al. 2014). However, existing causal 

and consequence models utilizing these methods use only a small number of data fields for 

prediction of cause and consequence of pipeline incidents, in spite of the presence of hundreds of 

data fields, thereby losing valuable insights (Najafi and Kulandaivel 2005, Li et al. 2016, 

Mazumder et al. 2021). Additionally, in the field of data-based incident probability estimation, 

it is commonly assumed that failure rates are constant (does not change with time), and 

homogeneous Poisson processes are utilized to consider a constant average failure rate (Restrepo 

et al. 2009, Shan et al. 2018, Carpenter et al. 2019). However, changes in the system brought 

about by multiple contributing factors together alter the failure rate over time and an assumption 

of constant failure rate becomes invalid. More accurate incident probability estimation calls for 

models that can adjust the failure rate based on gathered data for better probability prediction 

of a pipeline incident. Furthermore, although integrated models for causal, consequence, and 

probability analysis of pipeline incidents are present in literature, they are only applicable for 

risk estimation utilizing the historical incident data. In other words, they are not equipped to 

utilize the current condition of pipeline conditions and predict the risk of a pipeline incident in 

the near future. 
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To handle the above-mentioned limitations in risk (i.e., cause, consequence, and 

probability) analysis of pipeline incidents, the objective of this article is to develop an integrated 

risk prediction model for pipeline incidents. Specifically, the proposed model presents a 

framework for the prediction of likely causes of corrosion-induced pipeline incidents, the 

subsequent consequences, and the incident probabilities. The causes and consequences of a 

corrosion-induced pipeline incident are learned using a machine learning approach whereby 

significant data fields from the rich pipeline incident database are utilized to develop artificial 

neural networks (ANNs). Next, to predict the probability of pipeline incident, a nonhomogeneous 

Poisson process model which considers varying failure rates is utilized through a Bayesian 

analysis. While utilizing the proposed framework for risk prediction, the information about the 

current condition of the pipeline is fed into the ANN models and Bayesian analysis to predict the 

cause, consequence, and probability of corrosion-induced pipeline incident, thereby giving a 

comprehensive look at the risk of future incidents. 

This section is organized as follows. First, detailed information about the pipeline incident 

data utilized for the risk prediction and its preprocessing method is provided in Section 4.3. Next, 

the proposed methodology that consists of ANN models and Bayesian analysis is explained in 

Section 4.4, followed by a demonstration of the proposed risk analysis framework on corrosion 

induced pipeline incidents in Section 4.5.  

4.3 Data Processing 

In North America, the oil and gas pipeline incident database is managed by the PHMSA. 

Pipeline operators are required to report every event that involves an undesired 

release to the environment and meets any of the following criteria (Bolt et al. 2006) to the PHMSA: 

1. The incident involves a death or personal injury resulting in hospitalization 

2. Estimated property damage including the cost of commodity lost is greater than $50,000. 

 

In this work, the data has been collected from the PHMSA database corresponding to the onshore 

HL transmission pipelines in the US between 2010 and 2019. The collected data has 3,592 pipeline 

incidents, and each pipeline incident has 606 data fields. One of the most frequent causes in 

onshore HL transmission pipeline incidents in the last 10 years has been corrosion with 721 

incidents recorded over this time in the database. To develop a risk (i.e., cause, consequence, and 

probability) prediction model for corrosion-induced pipeline incidents in onshore HL transmission 
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pipelines, the data for corrosion-induced pipeline incidents is preprocessed for an effective risk 

prediction. 

4.3.1 Data for cause and consequence prediction 

For a cause and consequence prediction model for corrosion-induced pipeline incidents, 

70 out of 606 data fields are initially selected based on reasoning about their significance to 

corrosion-induced pipeline failure. There are two types of data fields among the selected ones: (a) 

generic data fields relevant to a failure (e.g., time, location, and area of the incident), and (b) data 

fields specific to corrosion failure (e.g., presence of corrosion inhibitors and lining). The challenge 

lies in the sparsity of the information in certain data fields and some level of aggregation is thus 

required while ensuring that the granularity of the data is not lost. In other words, some of these 

data fields are populated for only a small number of incidents. Therefore, these data fields have 

been combined to increase the information density of data fields. For example, among generic 

attributes, age of pipe and age of tank have been combined to account for the age of the item 

involved in the incident. As an example, for corrosion-specific attributes, there are n data fields 

related to inspection types, with each field representing a different type of inspection (such as 

magnetic flux, ultrasonic and triaxial inspection). Each of these fields has 1 and 0 as its values, 

depending on whether it has been performed or not. These n data fields have been combined 

to result in a new data field with its values as 1 to n depending on the recent inspection type 

performed. In this manner, the number of selected data fields has been reduced from 70 to 26. 

Numerical operations have then been performed on the selected data fields to produce 

more informative data fields. For example, the difference between the data fields, the year of 

manufacture of the item and the year of the incident, is utilized as the age of the item involved in 

the incident. Additionally, since most of the data fields (e.g., operator location, type of commodity 

releases) are categorical, numerical data fields have also been categorized into bins to maintain 

consistency in the data. For example, the age of the item involved in the incident is categorized 

into 9 bins: 10, 20, 30, 40, 50, 60, 70, 80, > 80. Here, bins 10 and 20 represent ages of the 

item ≤ 10, and > 10 and ≤ 20, respectively. Some further refining has been done to retain the 

most informative part of some data fields. For example, the local time of the incident has been 

extracted as either ’day’ or ’night’ and used for analysis. 

The selected data fields, their numbers of categories and the categories are listed in Table 

4.1. Among the selected data fields, the data fields such as the type of commodity released, area 
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of incident, depth of cover, subpart of the system involved, and item involved are selected to infer 

information of the system that is highly likely to undergo an incident. Further, the equipment 

specification such as coating type, diameter, and wall thickness of the pipe is selected to give 

specific information about the pipeline. Here, the pipeline function specifies that the pipeline is 

either transporting the commodity from the production site/well to refinery or similar facilities 

(gathering), or from refinery to final use or port (trunkline/transmission). It also indicates if the 

pipeline is operating above or below the 20 percent of the specified minimum yield strength (≤ 

20% SMYS or > 20% SMYS). 

Next, among data fields specific to corrosion failure, inspection-related data fields are 

selected to infer information about the condition of the pipeline. The internal inspection tool 

indicator represents the pipeline configuration to accommodate internal inspection tools, and 

the operation complications indicator represents the presence of operational factors which 

significantly complicate the execution of an internal inspection tool run. Here, SCADA in-place 

indicator and CPM in-place indicator represent the presence of supervisory control and data 

acquisition (SCADA)-based system and computational pipeline monitoring (CPM) leak detection 

system in place on the pipeline or facility involved in the incident, respectively. As a condition 

monitoring data field, prior damage is selected to represent observable damage to the coating or 

paint in the vicinity of the corrosion. Data fields such as corrosion inhibitors, corrosion lining, 

and cleaning dewatering are selected to represent commodity treatment with corrosion inhibitors 

or biocides, presence of interior coating or lining with a protective coating, and routine utilization 

of cleaning/dewatering pigs (or other operations). 

Table 4.1 Input data fields, their numbers of categories and the categories 

Data fields No. of 

categories 

Categories 

Operator location 18 TX, GA, CA, WY, PA, OK, IL, KS, AK, CO, OH, MD, UT, HI, 

NJ, NY, MT, NH 

Local time of incident 2 Day, Night 

Type of commodity 

released 

4 Crude oil, Refined and/or petroleum product (non-HVL), HVL or 

other flammable or toxic fluid, Carbon dioxide/biofuel/alternative 

fuel 

Area of incident 3 Underground, Aboveground, Tank including attached 

appurtenances/ transitional area 
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Data fields No. of 

categories 

Categories 

Depth of cover (in) 4 50, 100, 150, >150 

System subpart 

involved 

5 Pipeline including valve sites, Terminal/tank farm equipment and 

piping, Pump/meter station equipment and piping, Breakout 

tank/storage vessel including attached appurtenances, Equipment 

and piping associated with belowground storage 

Item involved 12 Pipe, Auxiliary piping (e.g. Drain lines), Tank/Vessel, Weld 

including heat affected zone, Valve, Relief line, Tubing, 

Meter/Prover, Flange, Scraper/pig trap/Sump/separator, Pump, 

Other 

Part of pipe involved 3 Pipe body, Pipe seam, Others 

Diameter of pipe (in) 5 5, 10, 15, 20, >20 

Pipe wall thickness 

(in) 

5 0.1, 0.2, 0.3, 0.4, >0.4 

Pipeline function 4 > 20% SYMS regulated trunkline/transmission, 

≤ 20% SYMS regulated trunkline/transmission, 

> 20% SYMS regulated gathering, 

≤ 20% SYMS regulated gathering 

Pipe coating type 11 Coal tar, Fusion bonded epoxy, Cold applied tape, Paint, Asphalt, 

Extruded polyethylene, Field applied epoxy, Polyolefin, 

Composite, Others, None 

Age of item involved 

(years) 

9 10, 20, 30, 40, 50, 60, 70, 80, >80 

Material involved 2 Carbon steel, Others 

Internal inspection 

tools indicator 

3 Yes, No, Null 

Operation 

complications 

indicator 

3 Yes, No, Null 

SCADA in-place 

indicator 

3 Yes, No, Null 

CPM in-place 

indicator 

3 Yes, No, Null 
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Data fields No. of 

categories 

Categories 

Age of cathodic 

protection (years) 

5 10, 30, 50, 70, >70 

Prior damage 3 Yes, No, Null 

Corrosion inhibitors 3 Yes, No, Null 

Corrosion lining 3 Yes, No, Null 

Cleaning dewatering 4 Yes, No, N/A- Not mainline pipe, Null 

Age of corrosion 

inspection (years) 

7 1, 2, 3, 4, 5, 6, >6 

Age of hydrotest 

(years) 

6 10, 20, 30, 40, 50, >50 

Direct inspection type 4 Yes and an investigative dig was conducted at the point of the 

incident’, Yes but the point of the incident was not identified as a 

dig site, No, Null 

 

As the output of the causal and consequence analysis of corrosion-induced pipeline incidents, four 

data fields are selected. The output of the causal analysis is the two types of corrosion, 

i.e., internal and external corrosion. The output of consequence analysis are three data fields: 

the total cost of property damage (in $s), the net loss of commodity released (in bbls) and the type 

of release. To increase the computational efficiency of the prediction model, consequences have 

been categorized into bins of powers of 10 as shown in Table 4.2. 

Table 4.2 Output data fields, their numbers of categories and the categories 

Data fields No. of categories Categories 

Cause 2 Internal corrosion, External corrosion 

Total cost (in $s) 3 105; 106; > 106 

Net loss (in bbls) 3 101; 102; > 102 

Type of release 2 Leak, Rupture 

4.3.2 Data for probability prediction 

To develop the probability prediction model for corrosion-induced pipeline incidents, the 

number of such incidents in the historical incident database is utilized. The number of such 

incidents that occurred due to internal and external corrosion over 2010-2019 vary widely as 
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shown in the 2nd and 3rd columns of Table 4.3, respectively. The total miles of pipeline operations 

also vary with time, and hence, incident probability prediction using actual numbers of incidents 

can be grossly misleading. The numbers of incidents are thus normalized by dividing them by 

the total miles of pipeline operation per 105 miles per year during the time considered. 

Table 4.3 Normalized number of corrosion-induced pipeline incidents due to internal and external 

corrosion that occurred in the USA over the years 2010-2018 

Year  

Actual number of 

corrosion-induced 

pipeline incidents 

Total miles of 

operation in a 

year 

Miles of 

operation/105 

miles-year 

Normalized number of 

corrosion-induced pipeline 

incidents 

 Internal External   Internal External 

2010  

2011  

2012  

2013  

2014  

2015  

2016  

2017  

2018 

43   

48  

66  

46  

57  

52  

54   

49   

31 

28 

31 

32 

27 

29 

48 

36 

26 

18 

181986  

183580  

186221  

192412  

199793  

208620  

212109  

215994  

219037 

1.82  

1.84  

1.86  

1.92  

1.99  

2.09  

2.12  

2.16  

2.19 

23.63  

26.15  

35.44  

23.91  

28.53  

24.93  

25.46  

22.69  

14.15 

15.38 

16.88 

17.18 

14.03 

14.51 

23.00 

16.97 

12.03 

8.21 

 

4.4 Proposed Framework 

To develop an integrated risk prediction model of corrosion-induced pipeline incidents, a 

framework that includes ANN models and Bayesian analysis is proposed in this work as shown in 

Figure 4.1. First, ANN models are utilized to leverage the rich pipeline incident database using 

data fields selected in Section 4.3.1 and to predict causes and consequences of pipeline incidents. 

Next, Bayesian analysis is used to determine the probability of pipeline incidents with 

consideration that the pipeline failure rates vary over time. The information of the predicted cause, 

consequence, and probability of pipeline incidents are combined to predict the risk of pipeline 

incidents. 
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Figure 4.1 The proposed integrated framework for risk prediction of corrosion-induced pipeline incidents 

4.4.1 Prediction model for cause and consequences of incident 

Utilizing the selected data fields in Section 4.3.1, four ANN models are developed to predict 

the causes and consequences of corrosion-induced pipeline incidents: one for causal analysis, 

and three for the consequence analysis in terms of total cost (in $s), net loss (in bbls) and type of 

release (leak or rupture). Then, the performances of the developed ANN models are evaluated. 

ANN model development 

The causal and consequence models developed in this work are input-output ANN models 

with the selected data fields listed in Table 4.1 as their inputs, and the data fields listed in Table 

4.2 as their outputs. The developed ANN models capture the causal dependencies and the 

contribution of the input data fields in the pipeline failures. These models understand the synergy 

among underlying input data fields and their collective ability to affect the pipeline integrity by 

utilizing a wealth of empirical knowledge accumulated in the PHMSA database. The methodology 

followed to develop the ANN models is described in Figure 4.2. 
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Figure 4.2 ANN model development methodology 

To develop the ANN model, first, the contributing factors of a corrosion-induced pipeline 

incident (i.e., significant data fields) are selected from the PHMSA database as described in 

Section 4.3.1. Then, the entire corrosion-induced pipeline incident data has been randomly divided 

into a ratio of 60:20:20 as training, validation, and testing data, respectively. The training and 

validation data is utilized for ANN model development, while testing data is used for evaluating 

the performance of the developed ANN models. Specifically, the training data is utilized to fit the 

ANN model by obtaining its parameter, i.e., weights and biases. Weights represent the strength of 

connections between neurons of the ANN, and biases are used with inputs to generate the outputs 

of the ANN. It is to be noted here that since the input and output data fields are categorical, one 

hot encoding is employed to convert them to numerical values to be utilized with the ANN model. 

One-hot encoding is a sparse encoding approach that has been widely applied to represent the 

categorical variables in various fields (Oyedele et al. 2021). In one-hot encoding, each unique 

value of categorical variables is converted into a new variable with values as 1 and 0 denoting the 

presence and absence of this new variable (He et al. 2018). 

In the ANN model development, the model activation functions have a significant impact 

on the learning speed of the neural network. Hence, a sigmoid activation function is used for 

the hidden layers due to its better gradient propagation and efficient computation. Since the 

outputs of the last layer, i.e, data fields from Table 2, are categorical in nature, a softmax activation 

function is utilized due to its suitability for a layer with categorical output. Here, the 
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softmax activation function gives a probability score to each category, and the category with the 

highest probability score is considered as the output of the network. While learning the model, 

loss function i.e., the mean square error between the actual output and the predicted output is 

minimized to obtain the optimized value of weights and biases. Here, a categorical cross-entropy 

loss function is used for its suitability to categorical outputs. 

Next, the validation data is used to provide an unbiased evaluation of model fit on the 

training data while tuning model hyperparameters, i.e, the number of layers and neurons in each 

layer. Specifically, the number of layers and neurons in each layer are adjusted to obtain a model 

accuracy greater than a predefined threshold. 

ANN model performance evaluation 

To evaluate the performance of the developed ANN model, the testing data, which is not 

presented to the network during model development, is utilized. Specifically, using the developed 

ANN models, output for each point in the testing data is predicted. The model accuracy is 

calculated as follows: 

𝑀𝑜𝑑𝑒𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 ∗
∑ 𝑝𝑘

𝐶
𝑘−1

𝑁
      (1) 

where pk is the number of accurately predicted output in kth output category, C is the total number 

of output categories, and N is the total number of data in the testing data. 

Utilizing the developed ANN causal model, the cause of a corrosion-induced pipeline incident 

(i.e., internal or external corrosion) is predicted given the current condition of the pipeline. 

Next, to predict the consequence of a corrosion-induced pipeline incident, the ANN consequence 

models are developed in the same manner. It is to be noted that the ANN consequence models 

utilize the predicted cause of the pipeline incident as one of the inputs in addition to the selected 

data fields. Next, the probability of the corrosion-induced pipeline incident is estimated using 

Bayesian analysis. 

4.4.2. Prediction model for probability of incident 

Prediction of the probability of an incident over a given time requires an understanding 

of the current incident rate and trend. From Table 4.3, it can be seen that the number of incidents 

varies over the years, indicating that the times between incidents are not uniformly distributed. 

In other words, incidents seem to occur more frequently in some years than others. When data 

is cluttered in certain periods and dispersed over others, it is not possible to provide an accurate 
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prediction into the future using average values, i.e., by simply assuming that the incident rate 

does not change with time. A time-trend analysis of incidents is required to consider whether the 

incident rate is increasing, decreasing, or remaining constant over time. 

The Poisson process commonly defines the failure of an entity by taking a failure process 

as being points located randomly in the time-space, thus enabling the Poisson process to analyze 

time-series data. Relaxation of a constant incident rate leads to consideration of a nonhomogeneous 

Poisson process (NHPP), where the incident/failure rate, called the rate of occurrence of 

failure (ROCOF) is a function of time, λ(t). For systems whose failures (or incidents) are 

influenced by multiple contributors or causation mechanisms, the NHPP is particularly suitable 

(Rausand and Hoyland 2003). In this work, we use the assumption that failures follow a NHPP to 

predict the time to the next failure and its probability. 

Nonhomogeneous Poisson process 

In NHPP, the incidents do not require stationary increments, i.e., some incidents are 

more likely to occur at certain times than others, and the time between incidents are generally 

neither independent nor identically distributed (Rausand and Hoyland 2003). Among the various 

parametric models that can define a NHPP, the power law model is the most developed and had 

been used in this study for trend analysis. In the power law model, the ROCOF is defined as 

𝜆(𝑡) =
𝛽

𝛼
(

𝑡

𝛼
)

𝛽−1

      𝛼, 𝛽 ≥ 0       (2) 

where α is the scale parameter that sets the units with which time is measured, and β is the shape 

parameter that determines how the ROCOF changes over time. The use of power law gives the 

benefit of direct inference about the trend of failures/accidents through the parameter β. Value 

of β < 1 indicates a decreasing trend in the rate of incidents over time, while β > 1 indicates 

incidents are occurring more frequently as time increases. Thus, a benefit of modeling a system 

as a NHPP is that it allows monitoring of the system’s performance over time. The parameters α 

and β will have to be estimated to determine the ROCOF at a given time t. The current study uses 

Bayesian inference to determine these parameters from the incident database. The reason for 

the preference of using Bayesian analysis over other methods, such as the maximum likelihood 

estimate, lies in the data being processed. Incidents of pipeline failure are taken as random 

processes, influenced by multiple causes and contributors, and Bayesian analysis assumes the 

value for the time to next failure (the parameter of interest) lies within a fixed credible range. 

Frequentist methods, unlike Bayesian analysis, assume this parameter of interest to have a fixed 



100 
 

value and hence are not appropriate for modeling such random pipeline incidents (Halim et al. 

2020). 

 

Bayesian inference as a tool of prediction 

According to the Bayesian theorem, the posterior distribution of the parameter of interest 

is written as: 

𝜋1(𝜃|𝑥) =
𝑓(𝑥|𝜃)𝜋0(𝜃)

∫ 𝑓(𝑥|𝜃)
𝜃 𝜋0(𝜃) 𝑑𝜃

      (3) 

where θ is the parameter of interest, π0(θ) is the prior distribution of θ, f(x|θ) is the likelihood 

function, or the aleatory model of x given values of θ, and π1(θ|x) is the posterior distribution of 

θ. In this work, the parameters of interest are those that enable the determination of the incident 

rate (α and β for power law), and x is the observed data. 

Bayesian analysis using NHPP is implemented in OpenBUGS R using the algorithm 

described in (Kelly 2007, Halim et al. 2021). This algorithm uses Markov chain Monte Carlo 

(MCMC) sampling to generate the joint posterior distribution of α and β. Observed data are 

incorporated into the model through the likelihood function. For the NHPP, each incident time 

after the first is taken to depend on the preceding incident time (Rodionov et al. 2009). If ti is the 

cumulative operational time incurred from the first incident to the ith one, the likelihood function 

for the power law process is given by: 

𝑓(𝑡1, 𝑡2, ⋯ 𝑡𝑛|𝛼, 𝛽) =
𝛽𝑛

𝛼𝑛𝛽
∏ 𝑡𝑖

𝛽−1
𝑒𝑥𝑝 [− (

𝑡𝑖

𝛼
)

𝛽

]𝑛
𝑖=1      (4) 

To make the analysis completely dependent on the observed data, non-informative priors are 

chosen for the Bayesian analysis. In OpenBUGS R , these are inserted as: 

𝛼~𝑔𝑎𝑚𝑚𝑎(0: 0001; 0: 0001)    (5a) 

𝛽~𝑔𝑎𝑚𝑚𝑎(0: 0001; 0: 0001)     5(b) 

The algorithm developed in OpenBUGS R uses the observed data to update the non-informative 

prior and obtain the joint posterior distribution of α and β. These are then used to predict the 

next value (with credible interval) of the cumulative time to failure. Using this, the probability of 

an incident over a given time in the future is calculated using: 

𝑃𝑟(𝑇 ≤ 𝑡) = 𝐹(𝑡) = 1 − 𝑒𝑥𝑝 (− ∫ 𝜇(𝜏)
𝑇+𝑡

𝑇
𝑑𝜏) = 1 − 𝑒𝑥𝑝(−𝜇[(𝑇 + 𝑡)𝛽 − 𝑇𝛽])  (6) 
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T +t where µ = α-β, T is the cumulative operating time upto the last incident, and t is the additional 

time of operation over which the probability of a pipeline incident is being predicted. 

For the iterative MCMC simulation, two chains are run simultaneously to determine 

quantitatively when convergence is achieved between the two chains using the BGR 

(BrooksGelman-Rubin) diagnostic in the OpenBUGS R software (Rodionov et al. 2009). Once 

convergence is achieved, the iterations are discarded and the model is re-run for further simulations 

that estimate the parameters. 

Utilizing the above-described models, first, the cause of a corrosion-induced pipeline 

incident (i.e., internal or external corrosion) is predicted given the current conditions of a pipeline. 

Next, the consequence and probability of pipeline failure due to the predicted cause are estimated. 

They are then multiplied to predict the risk of a pipeline failure due to the predicted cause of a 

corrosion pipeline incident. In the following sections, the results obtained from modeling the ANN 

and Bayesian analysis with NHPP are detailed and discussed. 

4.5 Results and Discussion 

The proposed framework including ANN models and Bayesian analysis is developed utilizing the 

preprocessed data for corrosion-induced pipeline incidents. The performance of the 

developed models is demonstrated on testing data. 

4.5.1 Cause and consequence prediction using ANN models 

Using 26 inputs listed in Table 4.1, four ANN models are constructed: one for causal analysis and 

the other three for consequence analysis. The ANN causal model differentiates between 

causes of incident as internal corrosion and external corrosion. The ANN consequence models 

predict the consequence of the incident in terms of the total cost of property damage (in $s), the 

net loss of commodity released (in bbls), and the type of incident. These four ANN models are 

validated and tested for their prediction accuracy. 
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Figure 4.3 Structure of ANN model 

The final structure of the ANN model developed in this work after training and validation 

is presented in Figure 4.3. Here, the model accuracy threshold for model development is taken as 

90%. The resultant network structure is designed to have an input layer, two hidden layers, and 

an output layer. Here, the inputs of the model are the selected data fields listed in Table 4.1, which 

are connected to the neurons/nodes in the first hidden layer. The first hidden layer is designed to 

have 20 nodes, and they are connected to the second layer which has 25 nodes. The second 

hidden layer is connected to the output layer, i.e., the data fields listed in Table 4.2. For each data 

field listed in Table 4.2, an ANN model is developed. 

The performance of the four developed ANN models on the training data are compared 

using the learning rate parameter which determines the rate to move toward a minimum of a loss 

function at each iteration. It can be observed in Figure 4.4 (left) that the learning rate of ANN 

models with outputs as cause and release type are higher than that of ANN models with outputs as 

net loss and total cost are low. This can be explained on the basis of the number of output categories 

of ANN models. Learning of causal dependencies among the input data fields to predict a higher 

number of output categories is difficult. Therefore, the learning rate is lower for ANN models 

with outputs as net loss and total cost. Since a lower learning rate implies lower model accuracy, 

the accuracies of ANN models with outputs as net loss and total cost are lower than that of ANN 

models with outputs as cause and release type as shown in Figure 4.4 (right). 
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Figure 4.4 Loss function vs iteration (left) and model accuracy vs iteration (right) for training data 

The performances of the developed ANN models are calculated using (1), where N = 144 

and the number of output categories of each model, C, is listed in the 2nd column of Table 4.4. 

The model performances on the validation data are listed in the 3rd column of Table 4.4. The 

model accuracy of all of the models on the validation data is greater than the threshold accuracy, 

i.e., 90%. Next, the model performances of the developed ANN models are evaluated on the testing 

data and listed in the 4th column of Table 4.4. It can be seen that model accuracy decreases with 

an increase in the number of categories. Another reason for a lower model accuracy for total cost 

is due to fact that total cost of an incident is affected by other factors such as population and 

natural resources near the pipeline, and presence of ignition source, which are not present in the 

PHMSA database. 

Table 4.4 ANN model accuracy: Validation and testing 

Output No. of categories Validation Testing 

Cause (Internal/External 

corrosion) 
2 97.40 94.54 

Total cost (105; 106; > 106 in $s) 3 90.80 70.08 

Net loss (101; 102; > 102 in bbls) 3 95.76 79.31 

Type of release (Leak/Rupture) 2 94.53 91.72 

 

After predicting the cause and consequence of a corrosion-induced pipeline incident given 

current conditions of a pipeline, the probability of incident due to the predicted cause is estimated 

using Bayesian analysis with NHPP. It is to be noted that among the predicted consequences, i.e., 
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the total cost, net loss and type of release, only the total cost is used for further analysis since it 

provides the most quantitative representation of consequence of an incident. 

4.5.2. Probability prediction using Bayesian analysis with NHPP 

To predict the probability of a corrosion-induced pipeline incident, the incidents are divided into 

6 categories according to the cause and the total cost of the incident (Table 4.5). The 

reason for this categorization is that the probabilities of corrosion-induced pipeline incidents vary 

significantly for different causes and total cost of incidents. As seen from Table 4.5, the number 

of pipeline incidents due to internal corrosion are higher than that due to external corrosion, and 

low consequence incidents are in higher numbers than those with high consequences, as expected. 

Due to variation in the number of incidents for different causes and total cost of incidents, the 

probabilities of the incidents may also vary. 

Table 4.5 Number of incidents in the categories based on causes and costs of incidents (TC = Total cost in 

$) 

 
Number of internal corrosion-induced 

pipeline incidents 

Number of external corrosion-induced 

pipeline incidents 

Year TC ≤ 105 105 < TC ≤ 106 TC > 106 TC ≤ 105 105 < TC ≤ 106 TC > 106 

2010  

2011  

2012  

2013  

2014  

2015  

2016  

2017  

2018 

33 

34  

46  

23  

33  

32  

37  

25  

17 

10  

12  

12  

16  

18  

19  

15  

20  

10 

0  

2  

8  

7  

6  

1  

2  

4  

4 

17 

14 

22 

15 

15 

30 

17 

14 

9 

9 

12 

8 

8 

12 

15 

16 

7 

6 

2 

5 

2 

4 

2 

3 

3 

5 

3 

 

For each of the category of corrosion-induced pipeline incidents, a Bayesian analysis 

model is developed as described in Section 3.2.2 to predict the probability of incidents. The 

cumulative time to incident is calculated from 01/01/2010 up to the incident of interest, divided 

by the normalizing factor (miles of operation per 105 miles per year). The observed data is 

provided as supplemental information. The developed algorithm uses the observed data to update 

the parameters α and β. The values of these parameters are given in Table 6. Since β < 1 and β > 
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1 indicate a decreasing and increasing rate of incidents with time, the internal corrosion-induced 

pipeline incidents with a total cost ≤ $105 are observed to have a decreasing rate of incidents with 

time, while all other categories are seen to have an increasing trend. It can also be observed from 

the increasing value of β with the increase in the total cost of the incident that the number of 

incidents are increasing at a higher rate for the incidents with higher total cost for both of the 

internal and external corrosion-induced incidents. 

Table 4.6 Bayesian parameters: α and β (TC = Total cost (in $s)) 

  α Β 

Cause  Total cost Mean Std. dev. Mean Std. dev. 

Internal  

corrosion  

TC ≤ 105  

105 < TC ≤ 106  

TC > 106 

5.53   

35.83  

121.70 

0.07  

12.22  

56.29 

0.986  

1.266  

1.346 

0.0024 

0.1121 

0.2449 

External  

corrosion  

TC ≤ 105  

105 < TC ≤ 106  

TC > 106 

17.35   

30.75  

118.30 

6.49  

12.84  

58.47 

1.096  

1.127  

1.271 

0.0882 

0.1184 

0.2434 

 

Utilizing the obtained posterior distributions of α and β ((3)), α and β are sampled and 

substituted in (6) to obtain the probability of the incident in next 7 days. In (6), t is the additional 

time of operation over which the probability of a corrosion-induced pipeline incident is being 

estimated, i.e., 7 days. The mean and standard deviation of the predicted probability of pipeline 

incident is presented in the 3rd and 4th columns of Table 4.7, respectively. It can be observed that 

the probability of a pipeline incident with a higher consequence is significantly lower than that 

with a lower consequence. This observation is in agreement with the observation from historical 

data presented in Table 4.5 in which the frequency of a pipeline incident with a higher consequence 

is significantly lower than that with a lower consequence. 

To establish the credibility of the developed Bayesian analysis models, the calculated next 

time to the incident data is compared with the historical data in each category as described in 

(Halim et al. 2021). The mean and standard deviation of the predicted next time to the incident 

are reported in the 5th and 6th columns of Table 4.7, respectively. It can be observed that the actual 

next time to the incident for each category is within one standard deviation from the predicted 
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mean next time to the incident. Therefore, the developed Bayesian analysis models can be utilized 

to accurately predict the probability of pipeline incident. 

Table 4.7 Bayesian analysis model accuracy: Predicted probability of incident, and predicted and actual 

next time to incident (TC = Total cost (in $s)) 

  Probability of incident 
Next time to incident (days since 

01/01/2010) 

Cause  Total Cost  Mean Std. dev. Mean Std. dev. Actual 

Internal  

corrosion  

TC ≤ 105  

105 < TC ≤ 106  

TC > 106  

0.6942   

0.5066   

0.1771 

0.03024  

0.04386  

0.04046 

1615 

1620  

1568 

5.85  

9.96  

39.30 

1621 

1622 

1587 

External  

corrosion  

TC < 105  

105 < TC < 106  

TC > 106  

0.5111   

0.3597   

0.1478 

0.0405  

0.04259  

0.03747 

1617  

1633  

1589 

10.04  

16.12  

48.69 

1616 

1624 

1615 

 

Utilizing the predicted cause and consequence of a corrosion-induced pipeline incident 

given the current conditions of a pipeline using ANN models, one of the six Bayesian analysis 

models is selected to predict the probability of pipeline incident in the next 7 days. Then, the 

predicted consequence and probability of pipeline incident are multiplied to predict the risk of 

a pipeline incident in the next 7 days (as described in Figure 6). As an example, to illustrate 

the risk prediction, the current conditions of the pipeline corresponding to the pipeline incident 

occurred on 12/21/2018 in Houston, TX (PHMSA report key 20190015) is utilized. The true 

cause, total cost, net loss, and type of this incident are internal corrosion, $16778, 0 bbl, and 

leak, respectively. Utilizing the developed ANN models with the current condition of the pipeline, 

the cause, total cost, net loss, and type of this incident are predicted as internal corrosion, ≤ 

$105, ≤ 10 bbl, and leak, respectively. An overestimation of the total cost and net loss occurs 

while using ANN models. Such an overestimation can be attributed to the categorization of these 

model outputs into bins and can be reduced by considering a higher number of bins for model 

outputs. However, it will result in a higher number of output categories, and consequently, leads 

to a lower model accuracy (as discussed in Section 4.5.1). Therefore, the number of bins for model 

outputs should be selected carefully to balance the trade-off between model output overestimation 

and the model accuracy. 



107 
 

 

Figure 4.5 Risk calculation framework 

Further, based on the predicted cause and consequence, i.e., internal corrosion and ≤ 

$105, the first Bayesian analysis model is selected to predict the probability of such incident in the 

next 7 days, i.e., P (IC, TC ≤ 105). As seen from Table 4.7, the mean and standard deviation of 

P(IC, TC≤105) is 0.6942 and 0.03024. Multiplying the consequence and probability of the 

incidence, the mean of R (IC, TC ≤ 105) is calculated as ≤ $6.942 x 104. Considering one standard 

deviation above the mean as its spread, the upper limit of R (IC, TC ≤ 105) is calculated as $7.244 

x 104 (= (0.6942 + 0.03024) x $105). It is to be noted that rest of the risks shown in Figure 4.5 are 

equal to zero since they are associated with a combination of causes and consequences other that 

the ones predicted. Hence, the upper limit of risk given current conditions of the pipeline as for 

the incident with the PHMSA report key 20190015 is predicted as $7.244 x 104. Here, the predicted 

risk value of a pipeline given its current condition provides a valuable insight into the impending 

loss and can be utilized by the pipeline operators for strategic management of the impending loss 

by controlling the factors that may result into the predicted cause of the incident. 
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5.0 CONCLUSION 

In this study, pipeline incident data obtained from incident records and incident investigation 

reports has been analyzed. The report examined the available sources of incident data and carefully 

selected a few datasets for further analysis. A few NLP and text mining techniques have been 

explored to extract useful causal information from incident data. Later an ANN model has been 

developed to predict pipeline incidents for specific conditions.   

The current work analyzes three incident datasets collected from pipeline operations from 

three different regions: PHMSA from the USA, NEB from Canada and EGIG from European 

Union. All databases provide a large amount of information related to an even larger number of 

pipeline incidents. A review of the type of information gathered is provided and some analysis of 

data pertaining to the causal factors behind the failures are provided. PHMSA database provides 

information on background factors, while NEB dataset provides information on underlying causes 

and allows identification of multiple causes behind an incident. Management issues influencing 

pipeline operations are brought about by the underlying factors in the NEB database.  

Although several studies investigated the causal relationship amongst different factors 

leading to pipeline failure, the relationships were merely associative in nature. It suggests that 

establishing a cause-effect relationship from such data is difficult. Pipeline specific information 

and operational data (coined as background factors) are essential, but they are not adequate to 

provide an in-depth understanding of the pipeline failures. Hence, the scope of improvement 

studying past incident data is limited. It requires “true” roots causes, or in other words, the 

underlying causes (such as management or organizational causes). For instance, association of 

crude oil or natural gas with a failure or association of pump or tank with a corrosion failure is not 

sufficient. More causal information such as incorrect operation or maintenance related to corrosion 

are required. Because crude oil or pump cannot be attributed as the cause of incident, however, 

incorrect operation or inadequate maintenance can be. NEB dataset provided a very good 

classification of such underlying causes. Such data will guide the development of a causal model 

that can capture the causation and interdependence of the factors under consideration. 

A few NLP and text mining techniques have been explored to extract useful information 

that may provide some incite about the underlying causes of the pipeline incidents. Current study 

explored the capability of three techniques (K-means clustering, co-occurrence network, and topic 

modeling) extracting contributing factors and causality of incidents from both the narrative 
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comments and incident investigation reports. It introduced a workflow of automated content 

analysis of incident descriptions. Due to the vast amount of text data in safety area and due to the 

lack a generalize NLP technique, no existing package is currently in place to offer automated 

solutions to extract causations and identify contributing factors. The workflow therefore provides 

a novel solution to mine the hidden knowledge to enhance the learning from the past incidents. 

The workflow can produce a cause-and-effect storyline of incident and the information unlocked 

allows a quick understanding of knowledge accumulated in the incident narratives which is time-

consuming and labor-intensive to digest manually even by experts. Thus, this work can provide a 

potential improvement of automation to previous works on risk analysis and accident modeling. 

Co-occurrence network approach shows high potential in turning incident text data into 

valuable knowledge because the structure of network may lead to a hierarchy of causation. By 

applying the co-occurrence network to narrowed-down narrative datasets under specific cause 

labels, more fine-grained factors of incident are identified which demonstrates the scalability of 

co-occurrence network approach. Topic modeling technique was also found to be promising 

capable to identifying factors relevant to a specific cause. Since topic modeling has the capability 

to operate as a semi-supervised learning method, it can be trimmed for specific extraction 

requirement. Despite the results by K-means clustering being coarse compared to the other, the 

case shown in the work still demonstrates that clustering analysis can be an asset to uncovering 

the synergistic effect of causes. t-SNE, is found to be promising in dealing with significantly high 

dimensional TF-IDF matrix as dimensionality reduction technique combined with clustering 

algorithm.  

At the end, an integrated framework for risk prediction has been presented. The framework 

was applied to a corrosion-induced pipeline incidents in the onshore HL transmission pipelines, 

enabling determination of the causes of incidents, their subsequent consequences and probabilities. 

The causal and consequence estimation models have been developed utilizing the ANN technique, 

and the probability estimation model utilizes the Bayesian analysis. The proposed framework first 

collects and processes the onshore HL transmission pipeline incident data from the PHMSA 

database. It eliminates the redundant data fields and selects 70 data fields resulting in higher 

information content. The number of data fields is further reduced to 26 using process knowledge 

resulting in higher information density. Utilizing the selected data fields, a reasonably accurate 

prediction model is developed to predict the cause, consequence, and probability of corrosion-
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induced pipeline incidents. Particularly, the proposed ANN model is applied to the preprocessed 

incident data and validated with 90-95% accuracy. The Bayesian analysis model performance is 

also tested for the prediction of the probability of the incident. Utilizing the proposed framework 

including ANN models for cause and consequence prediction and Bayesian analysis for probability 

prediction, the risk of a corrosion-induced pipeline incident can be predicted given the current 

condition of pipelines. This shows the strength of the proposed framework to predict the risk of 

corrosion-induced pipeline incidents and can further be extended to pipeline incidents caused by 

other causes such as excavation, natural forces, etc. 
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6.0 FUTURE WORK 

The current study examined the available incident data and incident investigation reports and 

investigated the scope of developing a causal model and predicting future pipeline incidents. The 

study explored different techniques and developed framework and models to extract information 

to build the causal model. Although the incident data collection method is very robust and 

comprehensive, there are opportunities to improve. Some important data field can be added and/or 

refined. A summary of scopes of improvement has been given below: 

• Data and information regarding all three aspects of causal analysis need to be considered. 

Currently, PHMSA is gathering direct causes (mapped cause and sub-causes), background 

factors (pipeline specific information and operational data) and a little bit of underlying 

factors (such as maintenance/ inspection data). Although the incident reporting system is 

very comprehensive, the underlying factors gathered are inadequate to understand the true 

condition of the pipeline and how to improve. A set of underlying conditions has been 

defined by NEB. Similar causes or reasoning can be adopted by PHMSA and accommodate 

them in incident reporting system. 

• Currently PHMSA allows to report only one mapped cause. However, there were incidents 

where two simultaneous causes contributed to the incident. Reporting of multiple causes 

should be allowed.   

• All data collected through the incident recording systems must have end purposes. Some 

specific purposes are certainly evident; however, any overarching goal is absent. In the 

absence of true underlying causes, the generation of effective actionable learning is 

difficult from the current dataset. For instance, data tells us about that equipment failure is 

a major cause of pipeline incident. It also gives us a clear picture of the corresponding 

consequences. However, how to overcome the problem, whether is it due to lack of 

maintenance or poorly designed system, cannot be identified from it. Such objectives need 

to be defined and any data necessary to complete the cycle must be included in the incident 

data recording system. 

• Incident investigation and findings can be a very important tool for learning from past. 

However, to make it a successful process, the incident investigation process needs to be 

designed appropriately. Currently, there is no common structure or methodology for 

incident investigation process. It is apparent from the most incident investigations had a 
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specific purpose that is to identify the precise direct cause which the reports termed as root 

cause to identify. Mostly processes did not intend to uncover the underlying causes of the 

incidents. Incident investigation process must identify all possible underlying causes in 

addition to the specific purpose they are currently being employed for.  

• A general classification of causes or contributing factors (taxonomy) has been provided 

here. However, a more comprehensive study is needed to define the terminologies 

precisely. Existing human and organizational factors classification can be adopted, or a 

new system can be developed.  

• Incident investigation reporting should be more structured. There must be a few mandatory 

sections such as incident description, key finding and/or recommendations or key lessons. 

NLP or text mining techniques will be able to extract necessary information from these 

sections more effectively.  

• More NLP and/or text mining techniques should be explored to improve their effectiveness. 

With better sets the techniques will be more efficient.  

• Although ANN is a powerful tool, it has its limitations. In current context, the lack of data 

or inadequate data forces to ignore the data field from the ANN model even though they 

seem reasonably relevant and important. Bayesian network with support from expert 

elicitation can be useful for such scenarios. Bayesian network approaches should be 

parallelly explored.    
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Appendix A1 A list of incident investigation reports mentioned in PHMSA website 

Operator Name 
Operator 

Id 

System 

Type 
Apparent Cause State 

Failure 

Date 

Date 

Posted 

Magellan Pipeline Company, LP 22610 HL Excavation Damage 3rd Party MN 4-Nov-03 12-Jun-12 

Enbridge Energy LP 11169 HL Natural Force MN 19-Feb-04 17-Oct-10 

BP Pipeline Co 18386 HL Corrosion External OH 25-Feb-04 26-Dec-12 

Jayhawk Pipeline 9175 HL Corrosion Internal KS 12-Apr-05 13-Oct-11 

Southern Star Central Gas Pipeline, Inc. 31711 NG Incorrect Operation KS 30-Jun-05 26-Dec-12 

Amoco Oil Company 395 HL Equipment Failure IN 18-Aug-05 20-Feb-13 

TE Products Pipeline Co 19237 HL Incorrect Operation OH 18-Sep-05 14-Feb-12 

Enbridge Energy LP 11169 HL Weld Seam Failure WI 1-Jan-07 11-Feb-13 

Southern Natural Gas 18516 GT Material Failure - Weld AL 23-Jan-07 7-Apr-11 

Enbridge Energy LP 11169 HL Weld Failure MN 13-Nov-07 17-Nov-10 

Northern Natural Gas Co 13750 GT Natural Forces Damage MN 23-May-08 8-Apr-16 

Panhandle Eastern Pipeline Co 15105 GT Corrosion External MO 25-Aug-08 25-Oct-10 

Marathon Pipe Line, LLC. 32147 HL Material Failure Rupture IL 3-Sep-08 6-Jun-17 

Dominion Transmission Inc 2714 GT Excavation Damage 2nd Party WV 23-Oct-08 29-Nov-10 

Columbia Gas Transmission 2616 GT Material Failure - Cracking PA 5-Nov-08 22-Mar-11 

Columbia Gas Transmission 2616 GT Corrosion Internal WV 4-Jan-09 20-Sep-11 

Mid-Valley Pipeline Co 12470 HL Material Failure OH 18-Feb-09 17-Nov-10 

Hampshire Gas 7050 GT Other - Miscellaneous WV 24-Mar-09 9-Mar-11 

Columbia Gas Transmission 2616 GT Equipment Failure WV 4-Apr-09 22-Mar-11 

Columbia Gas Transmission 2616 GT Equipment Failure WV 19-Apr-09 22-Mar-11 



115 
 

Operator Name 
Operator 

Id 

System 

Type 
Apparent Cause State 

Failure 

Date 

Date 

Posted 

Columbia Gas Transmission 2616 GT Equipment Failure WV 7-May-09 22-Mar-11 

Enbridge Energy LP 11169 HL Incorrect Operation WI 21-May-09 11-Feb-13 

Enbridge Energy LP 11169 HL Material Failure MN 9-Jun-09 17-Oct-10 

Enterprise Products Operating LLC 31618 GT Incorrect Operation OCS 4-Aug-09 13-Jan-12 

Texas Gas Transmission LLC 19270 GT Corrosion Internal TX 4-Aug-09 9-Jun-11 

Explorer Pipeline Co 4805 HL Corrosion External OK 17-Aug-09 10-Nov-10 

El Paso Natural Gas 4280 GT Unknown, Miscellaneous TX 5-Nov-09 18-Nov-11 

Columbia Gas Transmission 2616 GT Material Failure - Valve WV 16-Nov-09 20-Sep-11 

National Fuel Gas 13063 GT Corrosion External NY 21-Dec-09 22-Mar-11 

Enterprise Operating Products 31618 HL Material Failure - Fitting TX 23-Dec-09 17-Dec-10 

Buckeye Partners LP 1845 HL Corrosion External PA 29-Dec-09 4-Apr-11 

Southern Natural Gas 18516 GT Material Failure Pipe AL 31-Dec-09 9-Jun-11 

Southern Natural Gas 18516 GT Corrosion External MS 6-Jan-10 10-Aug-11 

Enbridge Energy, LP 11169 HL Material Failure Pipe ND 8-Jan-10 8-Jan-10 

El Paso Natural Gas Company 4280 GT Material Failure Pipe AZ 1-Mar-10 9-Jun-11 

Mid-Valley Pipeline Co 12470 HL Corrosion Internal TX 1-Mar-10 10-Aug-11 

Southern Star Central Gas Pipeline 31711 GT Material Failure Weld KS 2-Mar-10 15-Feb-12 

KM Interstate Gas Transmission Co 1007 GT Material Failure Pipe NE 9-Mar-10 17-Jan-12 

SFPP LP 18092 HL Corrosion Internal CA 16-Mar-10 20-Apr-11 

Sunoco Inc R&M 18779 HL Equipment Failure PA 25-Mar-10 9-Jun-11 

Whitecap Pipe Line Company 31563 HL Other Outside Force Damage OCS 25-Mar-10 24-Aug-11 

Bridger Lake, LLC 32483 HL Incorrect Operation WY 2-Apr-10 24-Aug-11 
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Operator Name 
Operator 

Id 

System 

Type 
Apparent Cause State 

Failure 

Date 

Date 

Posted 

TE Products Pipeline Company, LLC 

(TEPPCO) 19237 
GT 

Incorrect Operation IN 13-Apr-10 10-Jan-17 

Williams Gas Pipeline – Transco 19570 GT Corrosion External TX 26-Apr-10 20-Apr-11 

Chevron Pipe Line Company 2731 HL Outside Force Damage UT 11-Jun-10 9-Jun-11 

Suncor Energy (Rausand and Hoyland) 

Pipeline Company 31822 
HL 

Incorrect Operation WY 14-Jun-10 17-May-12 

Dixie Pipeline Company 3445 HL Excavation Damage 3rd Party GA 5-Jul-10 30-Sep-11 

Magellan Ammonia Pipeline 12105 HL Material Failure - Pipe NE 23-Jul-10 10-Aug-11 

Enbridge Energy, LP 11169 HL Equipment Failure MN 28-Jul-10 4-Jan-17 

Northern Natural Gas Co. 13750 GT Other Outside Force Damage IA 6-Aug-10 11-Jan-17 

Enterprise Products Operating LLC 31618 HL Material Failure Pipe NY 27-Aug-10 13-Jan-12 

Harbor Pipeline Co 7063 HL Incorrect Operation NJ 11-Oct-10 26-Dec-12 

Shell Pipeline Company, LP 31174 HL Material Failure Pipe LA 16-Nov-10 26-Dec-12 

Tennessee Gas Pipeline Co 19160 GT Material Failure Pipe LA 30-Nov-10 13-Jan-12 

Chevron Pipe Line Company 2731 HL Incorrect Operation UT 1-Dec-10 7-Jul-11 

Tennessee Gas Pipeline 19160 GT Corrosion Internal TX 8-Dec-10 20-Sep-11 

Columbia Gas Transmission Corp. 2616 GT Weld Leak NY 11-Jan-11 28-Feb-13 

Columbia Gas Transmission Corp. 2616 GT Weld Leak NY 11-Jan-11 13-May-16 

Chevron Pipe Line Company 18124 HL Excavation Damage LA 26-Jan-11 10-Jul-12 

Denbury Gulf Coast Pipelines 32545 HL Material Failure Pipe/ Weld LA 14-Feb-11 22-Jun-17 

Gulf South Pipeline Company, LP 31728 NG Material Failure TX 14-Feb-11 18-Nov-13 

Enterprise Crude Pipeline LLC 30829 HL Incorrect Operation OK 21-Feb-11 26-Dec-12 
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Operator Name 
Operator 

Id 

System 

Type 
Apparent Cause State 

Failure 

Date 

Date 

Posted 

Tennessee Gas Pipeline Company 19160 GT Material Failure OH 1-Mar-11 11-Jan-17 

Buckeye Partners 1845 HL Corrosion External PA 20-Mar-11 20-Sep-11 

ExxonMobil Pipeline Company 4906 HL Outside Force Damage MT 1-Jul-11 20-Feb-13 

TransCanada Northern Border Inc. 32487 GT Construction Damage WY 20-Jul-11 26-Feb-13 

Central Florida Pipeline Corporation 2190 HL 3rd Party Excavation FL 22-Jul-11 20-Feb-13 

Sunoco Pipeline L.P. 18718 HL Corrosion Internal PA 2-Aug-11 22-Mar-16 

Chevron Pipe Line Company 2731 HL Material Failure - Weld TX 8-Sep-11 12-Jun-12 

Buckeye Partners LP 1845 HL Excavation Damage 3rd Party NY 20-Sep-11 17-May-12 

Magellan Pipeline Company, LP 22610 HL Third Party Excavation KS 6-Oct-11 26-Feb-13 

Columbia Gas Transmission Corp 2616 GT Corrosion Internal PA 3-Nov-11 24-Apr-12 

Belle Fourche Pipeline Company 1248 

HL 

Apparent Operator Error WY 13-Nov-11 19-Apr-17 

Tennessee Gas Pipeline Company 19160 

NG 

Apparent Material Failure MS 22-Nov-11 21-Aug-13 

Magellan Pipeline Company 22610 HL Incorrect Operations TX 1-Dec-11 11-Feb-13 

Enterprise Products Operating LLC 31618 HL Material Weld Failure TX 27-Dec-11 8-Apr-16 

Columbia Gulf Transmission 2620 GT Natural Forces Damage KY 1-Feb-12 22-Mar-16 

Williams Gas Pipeline-Transco 19570 GT Corrosion External NJ 2-Apr-12 22-Mar-16 

Enterprise Crude Pipeline, LLC 30829 HL Internal Corrosion OK 8-Apr-12 3-Feb-14 

Texas Eastern Transmission L.P.'s 19235 
GT 

Equipment failure - Start Air 

Valve Malfunction PA 13-Apr-12 10-Mar-15 

El Paso Natural Gas Company 4280 GT Equipment Failure CA 2-May-12 23-Jul-13 
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Operator Name 
Operator 

Id 

System 

Type 
Apparent Cause State 

Failure 

Date 

Date 

Posted 

Buckeye Partners, LP 1845 HL Incorrect Operation PA 17-Jun-12 29-Mar-16 

Buckeye Partners, LP 1845 HL Corrosion Failure PA 13-Jul-12 23-Nov-15 

Magellan Pipeline Company, LP 26610 HL Other Incident Cause IA 22-Nov-12 9-Jun-16 

Magellan Pipeline Company, LP 26610 HL External Corrosion KS 25-Nov-12 8-Jun-17 

Buckeye Partners, LP 1845 HL Outside Force Damage NJ 10-Dec-12 28-Mar-16 

CCPS Transportation, LLC 32080 HL Equipment Failure OK 14-Dec-12 21-Dec-15 

Lion Oil Trading & Transportation, Inc. 11551 HL Corrosion Internal AR 9-Mar-13 4-Jan-17 

Mobil Pipe Line Company 12628 HL Material Failure - Pipe AR 29-Mar-13 22-Jun-16 

Enbridge Pipelines, LLC 31947 HL Internal Corrosion OK 17-May-13 24-Feb-14 

Enterprise Products Operating, LLC 31618 HL Material Failure Pipe IL 12-Aug-13 12-Aug-13 

Buckeye Partners, LP 1845 HL Incorrect Operation NJ 13-Aug-13 8-Oct-13 

Buckeye Partners, LP 1845 HL Other, Miscellaneous NY 16-Oct-13 21-Sep-16 

Columbia Gas Transmission Company 2620 NG Natural Force Damage KY 13-Feb-14 28-Mar-17 

Williams Partners Operating LLC 39054 NG Incorrect Operation WA 31-Mar-14 29-Apr-16 

Buckeye Partners, LP 1845 HL Internal Corrosion NJ 20-Aug-14 6-Jun-17 

Enterprise Products Operating, LLC 31618 HL Material Failure Pipe or Weld WV 26-Jan-15 14-Apr-17 

Plains Pipeline, LP 300 HL Corrosion External CA 19-May-15 1-Jun-16 

Transcontinental Gas Pipeline Company 19570 GT Material Failure - Cracking PA 9-Jun-15 9-Jun-16 

Centurion 31888 HL Equipment Failure TX 2-Aug-15 6-Jun-15 

Tennessee Gas Pipeline Company 19160 GT Corrosion External TX 3-Aug-15 4-Jan-17 

Columbia Gas Transmission, LLC 2616 GT Equipment Failure PA 9-Aug-15 22-Sep-16 

Kiantone Pipeline Company 10250 HL Natural Force Damage PA 25-Aug-15 9-Jun-16 
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Operator Name 
Operator 

Id 

System 

Type 
Apparent Cause State 

Failure 

Date 

Date 

Posted 

Gulf South Pipeline Company, LP 31728 GT Other Incident Cause LA 26-Aug-15 7-Jul-17 

Gulf South Pipeline Company, LP 31728 GT Other Incident Cause LA 26-Aug-15 29-Jun-17 

Enterprise Crude Pipeline 30829 

HL 

Apparent 

Tank Line Failure Due to Internal 

Corrosion OK 1-Dec-15 19-Apr-17 

TC Oil Pipeline Operations, Inc. 32334 HL Material Failure SD 16-Nov-17 20-Dec-18 

Natural Gas Pipeline Co of America 13120 GT Third-Party Damage IL 5-Dec-17 9-Jul-18 

Texas Gas Transmission LLC 19270 HL Material Failure of Pipe or Weld LA 9-Sept-15 22-Jun-17 
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Appendix A2 A summary of the incident investigation reports that was available for the study. 

Reports # Title Report date 
Incident 

date 

Primary root 

cause 

Commodity 

released 

Useful 

pages 

Used 

in 

NLP 

study 

130804 Failure Investigation Report 

Enbridge Energy Limited Partnership  

Line 1 Leak, Equipment Failure 

5/30/2015 7/28/2010 Leak Crude oil 2 No 

133500 Failure Investigation Report 

Sunoco Pipeline L.P. Darby Creek 

Tank Leak 

7/12/2013 2/8/2011 Leak Crude oil 3 Yes 

144352 Failure Investigation Report 

Enterprise Products Operating, LLC 

Material Failure 

5/26/2015 8/12/2013 Rupture, Material 

Failure 

Ethane/Propa

ne Mix 

6 No 

151195 Failure Investigation Report 

Kiantone Pipeline Company 

Cracked 2 inch NPS Drain - Crude Oil 

Leak, West Seneca Terminal, NY 

3/28/2016 8/25/2015 Leak Heavy Crude 

Oil 

2 No 

136756 Failure Investigation Report  

Belle Fourche, Sussex  

Diesel Line Release  

10/8/2013 11/13/2011 Operator 

Error/Incorrect 

Operations 

Diesel, Fuel 

Oil 

6 No 

129897 Failure Investigation Report 

Bridger Lake LLC 

Crude Oil Release 

8/4/2011 4/2/2010 Rupture caused by 

Operator Error 

Light Crude 

Oil 

4 No 
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Reports # Title Report date 
Incident 

date 

Primary root 

cause 

Commodity 

released 

Useful 

pages 

Used 

in 

NLP 

study 

147585 Failure Investigation Report 

Buckeye Linden Station 

Internal Corrosion Leak, 8-inch Relief 

Line 

2/11/2016 8/20/2014 Leak due to 

internal corrosion 

on dead leg station 

piping segment 

#2 Diesel 

Fuel 

3 Yes 

139214 Failure Investigation Report 

Buckeye Partners LP, Turnpike Road NY  

Line 803 Excavation Damage 

4/18/2012 9/20/2011 Leak caused by 

excavation 

damage (farmer 

using plow to 

install drain tile 

in field) 

Gasoline 3 No 

140298 Failure Investigation Report 

Buckeye Macungie 

Tank 230 bottom weld failure 

7/17/2013 7/13/2012 Leak from crack 

in weld between 

tank bottom and 

wall 

Hazardous 

Liquid 

(Gasoline) 

2 No 

141992 Failure Investigation Report 

Buckeye Partners Pipeline  

Gasoline Leak 

7/25/2013 12/10/2012 Pinhole Leak / 

Other Outside 

Force Damage; 

Electrical Arcing 

from 

Other Equipment 

or Facility 

Hazardous 

Liquid 

(Gasoline) 

3 No 
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Reports # Title Report date 
Incident 

date 

Primary root 

cause 

Commodity 

released 

Useful 

pages 

Used 

in 

NLP 

study 

133920 Failure Investigation Report 

Buckeye  

External Corrosion Pit near 

Shippingport, PA 

8/5/2011 3/20/2011 Pipeline Leak due 

to localized 

external corrosion 

pit 

Diesel 2 No 

142160 Failure Investigation Report 

Enbridge Pipeline 

Sump Pump Discharge Flex Hose Failure 

7/16/2013 12/14/2012 Equipment Failure 

- Flex Hose 

Failure on Sump 

Pump Discharge 

Resulting 

in the Release of 

Crude Oil 

Hazardous 

Liquid 

(Crude Oil) 

5 No 

151238 Failure Investigation Report 

Centurion Pipeline L.P. 

5/13/2016 8/2/2015 Tank Mixer 

Failure 

Crude Oil 7 No 

130345 Failure Investigation Report 

Chevron  

Leak 

4/14/2011 6/11/2010 Leak caused by 

Other Outside 

Force Damage – 

Electrical Arcing 

Crude Oil 3 No 

132398 Failure Investigation Report 

Chevron Pipeline  

Crude Oil Release 

6/7/2011 12/1/2010 Leak caused by 

Inadequate 

Procedures for 

Draining Water 

Crude Oil 

Condensate 

12 No 
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Reports # Title Report date 
Incident 

date 

Primary root 

cause 

Commodity 

released 

Useful 

pages 

Used 

in 

NLP 

study 

133527 Chevron Pipeline Company,  

Grand Bay 10-inch 

Pipeline, Plaquemines Parish, Louisiana 

5/30/2012 1/26/2011 Brittle, tensile 

fracture at pre-

existing 

mechanical 

damage 

Crude Oil 3 No 

135347 Failure Investigation Report 

Central Florida Pipeline  

10-inch Jet Fuel Pipeline Failure 

10/12/2012 7/22/2011 Pipe leaked due to 

mechanical 

damage 

Aviation jet 

fuel (Jet-A) 

11 No 

130575 Failure Investigation Report 

Dixie Pipeline Company  

8‐inch Propane Pipeline Release 

8/31/2011 7/5/2010 Leak due to third 

party excavation 

damage 

Propane 

(HVL) 

6 No 

143591 Failure Investigation Report 

Enbridge Pipelines, LLC,  

Tank 3013 24-inch Fill Line failure in 

Cushing, OK 

2/24/2014 5/17/2013 Internal 

Corrosion, 

Microbiologically 

Influenced (MIC) 

West Texas 

Intermediate 

Crude Oil 

7 Yes 

149469 Failure Investigation Report 

Enterprise Products Operating, LLC: 

ATEX Ethane Pipeline Failure, Follansbee, 

West Virginia 

2/24/2016 1/26/2015 Girth Weld Failure 

Caused by Ductile 

Tensile Overload 

Ethane 4 No 

130938 Failure Investigation Report 

Enterprise Products  

10/21/2011 8/27/2010 Circumferentially-

oriented stress 

Liquid 

Propane 

3 Yes 
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Reports # Title Report date 
Incident 

date 

Primary root 

cause 

Commodity 

released 

Useful 

pages 

Used 

in 

NLP 

study 

Propane Line Crack corrosion cracking 

caused the pipe to 

separate 

137399 Failure Investigation Report 

Enterprise Products Pipeline 

Rio Grande PL Girth Weld Failure 

9/12/2013 12/27/2011 Girth weld failure 

(complete 

separation of 

circumference of 

weld) 

LPG 

Products 

(Propane/But

ane) 

5 No 

151766 Failure Investigation Report 

Enterprise Crude Pipeline, LLC, 

Cushing West Tank Farm Release 

12/27/2016 12/1/2015 Tank line failure 

due to internal 

corrosion 

Crude Oil 5 Yes 

133587 Failure Investigation Report 

Enterprise Cushing Terminal 

5/30/2012 2/21/2011 Incorrect 

Operation 

Crude Oil 5 No 

139211 Failure Investigation Report 

Enterprise Crude Pipeline, LLC 

(Cushing West Tank Farm, Cushing, OK, 

Line C75) 

2/3/2014 4/8/2012 Breakout tank line 

failure due to 

internal corrosion 

Crude Oil 8 Yes 

132719 Failure Investigation Report 

Denbury Green 

10/1/2013 12/20/2010 

and 

02/14/2011 

Small seam weld 

penetrators from 

manufacture of the 

pipe 

CO2 7 No 
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Primary root 
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released 
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pages 
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in 

NLP 

study 

135547 Failure Investigation Report 

Harbor Pipeline  

Fire Incident, Mansfield Township, NJ 

7/5/2012 10/11/2010 Fire – Incorrect 

Operation 

ULSD Diesel 

Fuel 

2 No 

142985 Failure Investigation Report 

Lion Oil Trading & Transportation, Inc. 

Suction Strainer Failure - Magnolia Tank 

Farm 

9/12/2013 3/9/2013 Suction strainer 

failed resulting in 

the release of 

5,600 bbl of crude 

oil 

Crude Oil 5 No 

147517 Failure Investigation Report 

Magellan Pipeline Company, LP 

External Corrosion, Crevice and 

Atmospheric 

3/28/2015 

(11/8/2016) 

11/25/2012 Pinhole leak at 

bridge pipe 

support; crevice 

and atmospheric 

corrosion 

Refined 

Product—Jet 

Fuel 

6 Yes 

130689 Failure Investigation Report 

Magellan  

Ammonia Line 501 Buckle 

7/1/2011 7/23/2010 Leak, pipe buckle 

and crack resulting 

from compressive 

overload 

Anhydrous 

Ammonia 

5 No 

136869 Failure Investigation Report 

Magellan Pipeline Company, 

Orion 20-inch Pipeline, 3012 Tank Line, 

East Houston Terminal 

11/6/2012 12/1/2011 Operator 

Error/Incorrect 

Operation 

Diesel 7 No 



126 
 

Reports # Title Report date 
Incident 

date 

Primary root 
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released 
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pages 
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in 

NLP 

study 

136157 Failure Investigation Report 

Magellan  

#6-10” Excavation Damage Lawrence, 

Kansas 

11/29/2012 10/6/2011 Mechanical 

puncture of 

pipeline by third 

party excavator 

Refined 

Product – 

Diesel Fuel 

3 No 

129379 Failure Investigation Report 

Mid-Valley Pipeline  

Internal Corrosion 

7/11/2011 3/1/2010 Internal corrosion 

in manifold area 

of tank farm 

Crude Oil 4 Yes 

143154 Failure Investigation Report 

Mobil Pipe Line Company; Pegasus 

Pipeline, Mayflower, AR 

10/23/2013 3/29/2013 ERW Seam 

Failure 

Wabasca 

Heavy Crude 

Oil 

12 No 

150537 Failure Investigation Report 

Plains Pipeline, LP, Line 901 

Crude Oil Release, May 19, 2015 

Santa Barbara County, California 

5/5/2016 5/19/2015 External 

Corrosion 

Crude Oil 17 No 

129735 Failure Investigation Report 

SFPP LP  

Bleed Fitting Corrosion 

11/9/2010 3/16/2010 Leak from Bleed 

Fitting due to 

Internal Corrosion 

Refined 

Products 

2 Yes 

135866 Failure Investigation Report 

Shell Houma to Houston (Ho‐Ho) 

Pipeline 

6/29/2012 11/16/2010 Corrosion Fatigue 

Cracking 

Crude Oil 5 Yes 
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in 

NLP 

study 

130287 Failure Investigation Report 

Suncor Energy Pipeline Company (Suncor)  

Tank # 1168 Overfill 

4/13/2012 6/14/2010 Break Out Tank 

Overflow 

Crude Oil 3 No 

129572 Failure Investigation Report 

Sunoco R&M  

Flange Gasket 

4/28/2011 3/25/2010 Flange Leak 

caused by 

deteriorated 

gasket. The loss of 

pipe support and 

leakage through a 

closed valve 

contributed to the 

failure 

Vacuum Gas 

Oil and Light 

Cycle Oil 

2 No 

158348 Failure Investigation Report 

Material Failure – Mechanical Damage 

from Original Construction – TC Oil 

Pipeline Operations, Inc 

11/28/2018 11/16/2017 Rupture – Material 

Failure – Damage 

from Original 

Construction 

Crude Oil 13 No 

130425 Failure Investigation Report 

Whitecap (Chevron), 18” Offshore Failure 

6/16/2011 3/25/2010 Leak/Outside 

force damage from 

contact with other 

pipeline 

Crude Oil 4 No 
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